Deep Learning Approaches to RL



Progress of RL in Practice

At last — a computer program that
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ALL SYSTEMS GO

[AlphaZero, Silver et.al, 17]

.. 31601688

T4 1714
vy




Outline

1. RL+Search: Self Play
1.1. MCTS
1.2. AlphaZero/Muzero
2. Direct Policy Optimization
2.1. Conservative Policy lteration/TRPO/PPO
3. RL for “Alignment”
3.1.RLHF & Constitutional Al
4. RL for Supply Chain
4.1. RL in the “real world”



Fascination with Al and Games...

Dartmouth

Conference
1956: the birth of Al

Bernstein's
Chess Al

1958: first fully
functional chess Al
developed

1974: first world TD_
computer chess

champion Gam mon
. 1992: RL and neural
net based back-
gammon Al shown

History of Game Al
Kaissa By: Andrey Kurenkov

Monte MCTS Go

predicted probability

of winning, v,

Mac Hack

1967: chess Al beats
person in tournament

Zobrist's Al

1968: First Go Al,
beats human amateur
1989: convolutional
nets first
demonstrated

1962: Samuel's BaCkprOp
program wins game 1986: multi-layer
against person neural net approach
widely known

Carlo Go

1993: first research Go Al with MCTS

on Go with stochastic
search

2006: French
researchers advance

Crazy

NeuroGo Stone
1996: ConvNet with 2008: MCTS Go Al
RL for Go, 13 kyu beats 4 dan player
(amateur)

CHINOOK

1994: checkers Al
draws with world
champion

Zen19

2012: MCTS based Go
Al reaches 5-dan rank

DeepMind
Deep BIUe 2014: Google buys

deep-RL Al company
1997: IBM chess Al for $400Mil

beats world champion
AlphaGo

2016: Deep
Learning+MCST Go Al
beats top human



Fascination with Al and Games...

» DeepBlue v. Kasparov (1997)
e winning in chess wasn’t a good indicator of
“progress in Al”
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Game Trees
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AlphaBeta Search

Minimax with alpha-beta pruning on a two-person game tree of 4 plies
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Minimax with alpha-beta pruning on a two-person game tree of 4 plies

AlphaBeta Search o

For every move, we build a lookahead tree (and repeat).
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Minimax with alpha-beta pruning on a two-person game tree of 4 plies

AlphaBeta Search

For every move, we build a lookahead tree (and repeat).

The algorithm maintains two values, alpha and beta, which respectively
represent the score that the maximizing player is assured of getting and the
score that the minimizing player is assured of getting.

* Assume opponents will always try to do “best responses”
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Minimax with alpha-beta pruning on a two-person game tree of 4 plies

AlphaBeta Search

For every move, we build a lookahead tree (and repeat).

The algorithm maintains two values, alpha and beta, which respectively
represent the score that the maximizing player is assured of getting and the
score that the minimizing player is assured of getting.

* Assume opponents will always try to do “best responses”

Before every move, try to figure out a good move by lookahead.

* Need a heuristic for how to choose actions (i.e. which branches to search)
* Try to prune away as may branches as we can.
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Stockfish 15.1

Strong open source chess engine

Download Stockfish

Latest from the blog

2022-12-04: Stockfish 15.1

2022-11-18: ChessBase GmbH and the Stockfish team reach an
agreement and end their legal dispute & Home

2022-06-22: Public court hearing soon!

Chess.com
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More

@ Analysis Board

Evaluation @D Li
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@ EO5: Catalan Opening: Open Defense, Classical Line,
1. d4 d5 2. c4 €6 3. Nf3 Nf6 4. g3 Be7 5. Bg2 0-0 6. 0-0 dxc4 7. Qc2

a6 8. Qxc4 b5 9. Qc2 Bb7 10. Bf4 Nc6 11. Rd1 Nb4 12. Qc1 Nbd5 13.
Nbd2 Nxf4 14. gxf4 Bd6 15. Nb3
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MCTS:
Monte Carlo Tree Search

Repeated X times

Selection - Expansion - Simulation -+ Backpropagation

Figure from Chasiot (2006}

» AlphaBeta pessimistic approach may not lead to effective heuristics.
« MCTS: for every move, we build a lookahead tree; take an action; and repeat.
* We are some node “s”.
* We use a heuristic to estimate the “value” of taking action “a” at any node “s”
(We don’t directly compute minmax values).
* Four steps to the algorithm.
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SELECTION EXPANSION SIMULATION BACKPROPAGATION

(11721 (11/21)

' A AN AN ~@ A A A
(38 ) (7/10) (0/3) (3/8) (7/10) (o/3) [ 3/8 )
' A4 N 4 S A4 A\ 4 N /

( 2/3 ) [ 2/3 ] [ 2/4 ] [ 1/6 | [ 1/2 ) [ 9/3 ) 2/3 ) [(2/4 ) ( 1/6 ’] (172 (2/3 ) ( 2/3) 1/2
A A <
[ 2/3) (2/3) (33)
N4 N4 \T_ 4

v
0/1

« Selection: Start from “root R” (current game) and select successive child nodes until a “leaf
node L” (a node that has an “unvisited” child) is reached.
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« Selection: Start from “root R” (current game) and select successive child nodes until a “leaf
node L” (a node that has an “unvisited” child) is reached.
* Aleafis any node that has a potential child from which no simulation (rollout) has yet
been initiated (i.e. we haven’t tried all the actions at L).

|
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SELECTION
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« Selection: Start from “root R” (current game) and select successive child nodes until a “leaf
node L” (a node that has an “unvisited” child) is reached.

* Aleafis any node that has a potential child from which no simulation (rollout) has yet
been initiated (i.e. we haven’t tried all the actions at L).

At state s, choose action a leading to 5" = NextState(s, a) which maximizes:

UCB score(a) =

#wins at s'

#visits to s'

9

+ CX

log(total visits to s)

#visits to s'



SELECTION EXPANSION SIMULATION BACKPROPAGATION
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* Expansion: Stop Selection at a leaf node L. Unless leaf L ends the game decisively (e.g.
win/loss/draw) for either player, create a child node (a new node) and choose this node C.
* This step just creates a new node.
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e Simulation: Complete a “playout/rollout” from this new node C till the game ends.
» Simplest approach: choose uniform at random moves until the game ends.
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“Backpropagation” (the update step): Use the result of the rollout to update information in
the nodes on the path from the root R to C.
* Update the total # of wins and # visits on this path.

e # wins at at a node is the number of previous wins from any sim from this node.
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SELECTION EXPANSION
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« “Backpropagation” (the update step): Use the result of the rollout to update information in

the nodes on the path from the root R to C.
* Update the total # of wins and # visits on this path.

e # wins at at a node is the number of previous wins from any sim from this node.

* Repeat all steps N times, then select “best” action at the root node R (the game state).

12



AlphaGo

AlphaGo versus Lee Sedol
4-1

Seoul, South Korea, 9-15 March 2016

Game one AlphaGo W+R
Game two AlphaGo B+R
Game three AlphaGo W+R
Game four Lee Sedol W+R
Game five AlphaGo W+R

e Lots of moving parts:

- 00:00:27

* Imitation Learning: first, the algo estimates the values from historical games.
e |t then uses an MCTS-stye lookahead with learned value functions.
* AlphaZero (2017) is was a simpler more successful approach.

13



AlphaZero

* AlphaZero: MCTS + DeeplLearning
* There is a value network and policy network:

« avalue network estimating for the state of the board v,(s), for a player
- A policy network P ,(a|s) that is a probability vector over all possible actions.

« These are fit with training data (s,, a,, R,) under the loss function:

Loss(0) = Z (vy(s,) — Rt)2 —logpy(a,|s,)

* We’'ll come back to how we get this data, but let’s see how we select actions.

14



AlphaZero

SELECTION EXPANSION SIMULATION BACKPROPAGATION
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AlphaZero

SELECTION EXPANSION SIMULATION BACKPROPAGATION

AR U U T

* Selection and Simulation: Start from “root R” (current ga};ne) and do a rollout of no more
than K steps.

15



AlphaZero

SELECTION EXPANSION SIMULATION BACKPROPAGATION

B¢ AR FER

* Selection and Simulation: Start from “root R” (current g%ne) and do a rollout of no more
than K steps.
At state s, choose action a leading to s’ = NextState(s, a) which maximizes:

log(total visits to s)

UCB score(a) = Avwalue(s') + C - py(als) - \/
#visits to s'

15



AlphaZero

SELECTION EXPANSION SIMULATION

B KR,

» Selection and Simulation: Start from “root R” (current g |
than K steps.
At state s, choose action a leading to s’ = NextState(s, a) which maximizes:

log(total visits to s)
UCB score(a) € Avwalue(s') + C - py(als) -

BACKPROPAGATION

e) and do a rollout of no more

#visits to s'
« We'll specify AverageValue(s’) soon. ol

#wins at s' Sok
#visits to s'

15

. In MCTS, this average was



AlphaZero

SELECTION EXPANSION SIMULATION BACKPROPAGATION

16



SELECTION EXPANSION SIMULATION BACKPROPAGATION

BaS Y
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“Backpropagation” (the update step):
Suppose the Simulation ends at node C after K steps.
With the rollout result, update AvValue(s) on all the nodes s in the path from the root R to
terminal node C:

N(s)

1)
AvValue(s) < mAvValue(s) + WVQ(C )

N(s) <« N(s) + 1

16



AlphaZero

SELECTION EXPANSION SIMULATION BACKPROPAGATION
* “Backpropagation” (the update step): v
Q

Suppose the Simulation ends at node C after K steps.
With the rollout result, update AvValue(s) on all the nodes s in the path from the root R to
terminal node C:

N(s)

1)
AvValue(s) < mAvValue(s) + WVQ(C )

N(s) <« N(s) + 1

* Repeat all steps N times, then select “best” action at the root node R (the game state).

16



AlphaZero: Learning

« Collect training data (s,, a,, R,) from self-play. Then fit:

Loss(0) = Z (vg(s,) — Rt)2 — log py(a,|s,)

17



AlphaZero: Learning

« Collect training data (s,, a,, R,) from self-play. Then fit:

Loss(0) = )" (v(s) — R)* — log p(a, | s,)

AlphaZero was trained solely via self-play, using 5,000 first-generation TPUs to generate the games and 64 second-generation TPUs to train
the neural networks. In parallel, the in-training AlphaZero was periodically matched against its benchmark (Stockfish, elmo, or AlphaGo Zero) in

17



Comparing Monte Carlo tree search searches, AlphaZero searches just 80,000 positions per second in chess and 40,000 in shogi, compared to
70 million for Stockfish and 35 million for elmo. AlphaZero compensates for the lower number of evaluations by using its deep neural network to

Chess [edit]

In AlphaZero's chess match against Stockfish 8 (2016 TCEC world champion), each program was given one minute per move. Stockfish was
allocated 64 threads and a hash size of 1 GB,!'! a setting that Stockfish's Tord Romstad later criticized as suboptimal.l”lI"?® 11 AphaZero was
trained on chess for a total of nine hours before the match. During the match, AlphaZero ran on a single machine with four application-specific
TPUs. In 100 games from the normal starting position, AlphaZero won 25 games as White, won 3 as Black, and drew the remaining 728 Ina
series of twelve, 100-game matches (of unspecified time or resource constraints) against Stockfish starting from the 12 most popular human
openings, AlphaZero won 290, drew 886 and lost 24."]

Shogi [ edit]

AlphaZero was trained on shogi for a total of two hours before the tournament. In 100 shogi games against elmo (World Computer Shogi
Championship 27 summer 2017 tournament version with YaneuraOu 4.73 search), AlphaZero won 90 times, lost 8 times and drew twice.!8] As
in the chess games, each program got one minute per move, and elmo was given 64 threads and a hash size of 1 GB.["]

Go |[edit]

After 34 hours of self-learning of Go and against AlphaGo Zero, AlphaZero won 60 games and lost 40./1(€]

18



Year
2018
2019
2019
2019
2020
2020
2020
2021
2021
2022
2023

Comparing Monte Carlo tree search searches, AlphaZero searches just 80,000 positions per second in chess and 40,000 in shogi, compared to
70 million for Stockfish and 35 million for elmo. AlphaZero compensates for the lower number of evaluations by using its deep neural network to

Cup

Time Controls
30+10
30+5
30+5
30+5
30+5
30+5
30+5
30+5
30+5
30+3
30+3

Result
1st
anglnote 11
2nd
1st
1st
3rd
1st
1st
1st
1st
2nd

Ref
[63]

[64]
[65]
[66]
[67]
[68]
[69]
[70]
[71]
[72]

[73]

Chess [edit]

In AlphaZero's chess match against Stockfish 8 (2016 TCEC world champion), each program was given one minute per move. Stockfish was
allocated 64 threads and a hash size of 1 GB,!'! a setting that Stockfish's Tord Romstad later criticized as suboptimal.l”lI"?® 11 AphaZero was
trained on chess for a total of nine hours before the match. During the match, AlphaZero ran on a single machine with four application-specific
TPUs. In 100 games from the normal starting position, AlphaZero won 25 games as White, won 3 as Black, and drew the remaining 728 Ina
series of twelve, 100-game matches (of unspecified time or resource constraints) against Stockfish starting from the 12 most popular human
openings, AlphaZero won 290, drew 886 and lost 24."]

Shogi [ edit]

AlphaZero was trained on shogi for a total of two hours before the tournament. In 100 shogi games against elmo (World Computer Shogi
Championship 27 summer 2017 tournament version with YaneuraOu 4.73 search), AlphaZero won 90 times, lost 8 times and drew twice.!8] As
in the chess games, each program got one minute per move, and elmo was given 64 threads and a hash size of 1 GB.["]

Go |[edit]

After 34 hours of self-learning of Go and against AlphaGo Zero, AlphaZero won 60 games and lost 40./1(€]

Leela Chess Zero (abbreviated as LCZero, Ic0) is a free, open-source,

and deep neural network—based chess engine and volunteer computing
Leela Chess Zero project. Development has been spearheaded by programmer Gary
Linscott, who is also a developer for the Stockfish chess engine. Leela
Chess Zero was adapted from the Leela Zero Go engine,['! which in turn
was based on Google's AlphaGo Zero project.[2l One of the purposes of
Original author(s) Gian-Carlo Pascutto, Gary Leela Chess Zero was to verify the methods in the AlphaZero paper as

Linscott aoplied to the aame of chess.
18




MuZero

* MuZero
e Basically AlphaZero but we don’t know game rules.
* We learn the transition function as we play.

19



Outline

1. RL+Search: Self Play
1.1. MCTS
1.2. AlphaZero/Muzero
2. Direct Policy Optimization
2.1. Conservative Policy lteration/TRPO/PPO
3. RL for “Alignment”
3.1.RLHF & Constitutional Al
4. RL for Supply Chain
4.1. RL in the “real world”
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Markov Decision Process

Learning
Agent

Environmen

a ~ 7(s)

Policy: determine action based on state

N

: Multiple Steps

~__ _—

Send reward and next state from a
Markovian transition dynamics

g

e
.
X
.

r(s,a),s’ ~ P(-|s,a)

SO ~ Ko, ao ~ 7[(50), ro, Sl ~ P(So, ao), a; ~ ﬂ(Sl), ry...
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Infinite horizon Discounted MDP

M= {S,A,P,r, v}
P:SXArH AS), r:SxA-[0,1], ye]l0,l])
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Infinite horizon Discounted MDP

M= {S,A,P,r, v}
P:SXArH AS), r:SxA-[0,1], ye]l0,l])

Policy z: S —» A(A)
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Infinite horizon Discounted MDP

M= {S,A,P,r, v}
P:SXArH AS), r:SxA-[0,1], ye]l0,l])

Policy z: S —» A(A)

Value function V*(s) = E Z vir(s,, ay) ‘ So =S, ay, ~ 7(sp,), S ~ PC- | s, ap)
h=0
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Infinite horizon Discounted MDP

M= {S,A,P,r, v}
P:SXArH AS), r:SxA-[0,1], ye]l0,l])

Policy z: S —» A(A)

Value function V*(s) = E [Z vir(s,, ay) ‘ So = 8, @y, ~ 7(sy), Spq ~ PC- | s, ah)]
h=0

Q function O”*(s,a) = E [Z yhr(sh, a,) ‘ (50> dg) = (5, @), ay, ~ 7(sy), Spyq ~ PC- | sy ah)]
h=0
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Bellman Consistency Equations
and the Advantage Function
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Bellman Consistency Equations
and the Advantage Function

VAS) = Epongs) [r(s, a) + }/[ES’NP(-|s,a)Vﬂ(S/)]

Q"(s,a) = r(s,a) + YEgp 5.0V (5)



Bellman Consistency Equations
and the Advantage Function

VAS) = Epongs) [r(s, a) + ;/[ES,NP(,“,Q)V”(S’)]

Q"(s,a) = r(s,a) + YEgp 5.0V (5)

A%(s,a) = Q"(s,a) — VX(s)



State action occupancy measures and Advantages

P, (s, a; sy, m): probability of  visiting (s, a) at time step & € N, starting at s

di(s,a) = (1=7) ) 7"Py(s, ;5.
h=0

1
V() = 1——7’ Z ds’; (s, a)r(s,a)
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di(s,a) = (1=7) ) 7"Py(s, ;5.
h=0

1
V() = 1——7’ Z ds’; (s, a)r(s,a)
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State action occupancy measures and Advantages

P, (s, a; sy, m): probability of  visiting (s, a) at time step & € N, starting at s

di(s,a) = (1=7) ) 7"Py(s, ;5.
h=0

1
V() = 1——7’ Z ds’; (s, a)r(s,a)

Advantage function: A*(s, a) = Q"(s,a) — V*(s)

Notation: dj(s) = (1 — ) 2 yhPZ(S;ﬂ)
24 h=0
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7*1(5) = arg max 475, @ up { +e
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Policy Iteration

Monotonic improvement of Pl: V”ZH(S) > Vﬂt(S), Vs
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Policy Iteration

7'+1(s) = arg max A” (s, a)
a

Monotonic improvement of Pl: V”ZH(S) > Vﬂt(S), Vs
Contraction to O*:

However, for large scale, unknown MDPs, we are not able
to compute/estimate A*(s, a) at all s, a, so how can we do
a policy update?

25



Recap

Recall Policy Iteration (PI):

7'(s) = argmax A”*(s, a)
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Recap

Recall Policy Iteration (PI):

7'(s) = argmax A”*(s, a)

Performance Difference Lemma (PDL): for all s, € S
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Recap

Recall Policy Iteration (PI):

7'(s) = argmax A”*(s, a)

Performance Difference Lemma (PDL): for all s, € S

' g1 1 T
VZ(s9) — V(sp) = 1—_7/[Es,aN & |A%(s, a)]
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Recap

Recall Policy Iteration (PI):

7'(s) = argmax A”*(s, a)

Performance Difference Lemma (PDL): for all s, € S

, 1
VHo0) = Vs = 7 Epa [A75,0)

s, aNd”

> (0

Monotonic improvement of PI: V”M(S) 1% (s) = 1_|E?Ndz+1 [max A”(S a)
acA
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I
Proof of PDL V7(sp) = V*(sp) = —y[E sa~dz, [AT(5,0)]

/

Sm'Yy,m=A{rna,.. 7}, ={n,na,...,7},...1

ﬂ():{ﬂ (0]

Vi(sg) = V=(s5),  V7(s5) = V™(sp)
V() — V(s)
= yn[ESan]:Dn(';SO’n') <r(Sn’ ﬂ(Sn)) + }/l]ESn+1NPsn,n(sn)Vﬂ,(Sn+1) a Vﬂ/(sn))
= V'E, 5 anm (Q7(5 7(5,)) = V()

— }/n[Esnfv[P’n(-;sO,ﬂ) (Aﬂ/(sn’ E(Sn)))

(S )
Telescoping: VE - VT = Z V7 — VPt

. n=0

{x, ..., 7}



Attempt One: Approximate Policy Iteration (API)
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Attempt One: Approximate Policy Iteration (API)

Given the current policy z', let’s act greedily wrt 7 under d/’f

i.e., let’s aim to (approximately) solve the following program:

arg max Eg lA”t(S, ﬂ(S))] Greedy Policy Selector

nell
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Attempt One: Approximate Policy Iteration (API)

Given the current policy z', let’s act greedily wrt 7 under d;ft
i.e., let’s aim to (approximately) solve the following program:
argmax [y lA”t(S, ﬂ(S))] Greedy Policy Selector

nell

But we can only sample from d”™, and we can only get an approximation ofA”Z(s, a)

28



Attempt One: Approximate Policy Iteration (API)

Given the current policy z', let’s act greedily wrt 7 under d;ft

i.e., let’s aim to (approximately) solve the following program:

arg max Eg lA”t(S, ﬂ(S))] Greedy Policy Selector

nell
But we can only sample from d™, and we can only get an approximation ofA”t(s, a)

We can hope for an Approximate Greedy Policy Selector a reduction to Regression
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Algorithm: Approximate Policy Iteration (API)

lterate:

APl: 't € argmax E, , .. [A%(s, n(s))]
nell ’ a
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Algorithm: Approximate Policy Iteration (API)
lterate:

APl: 7"l € argmaxE___ [A”I(S, Tf(S))]
nell ’ a

Question:
(1) Does API have monotonic improvement?
(2) Does it convergence?
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Algorithm: Approximate Policy Iteration (API)
lterate:

APl: z'*! € argmaxE,_ az [A7(s, n(s))]
rell

Question:
(1) Does APl have monotonic improvement?
(2) Does it convergence?

Monotonic Improvement Not Guaranteed:

t+1 1
VT (s) = Q7 (s) = —y[EsaNdm[ (s, a)]
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Conservative Policy lteration—An Incremental Policy Optimization Approach

(And the benefit of being incremental)

30



Key Idea of CPI: Incremental Update—No Abrupt Distribution Change

Let’s design policy update rule such that d”t+1 and d” are not that different!
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Key Idea of CPI: Incremental Update—No Abrupt Distribution Change

Let’s design policy update rule such that d”t+1 and d” are not that different!

Recall Performance Difference Lemma:

+1 t 1

Vﬂ' _ Vﬂ' — _[ESNd”t-'-l [Aﬂt(sa ﬂt+1(S))]
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Key Idea of CPI: Incremental Update—No Abrupt Distribution Change

Let’s design policy update rule such that d”t+1 and d” are not that different!

Recall Performance Difference Lemma:

+1 t 1

Vﬂ' _ Vﬂ' — _[ESNd”t-'-l [Aﬂt(sa ﬂt+1(s))]

! t+1
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Key Idea of CPI: Incremental Update—No Abrupt Distribution Change

Let’s design policy update rule such that d”t+1 and d” are not that different!

Recall Performance Difference Lemma:

t+1 t 1

Vﬂ — Vﬂ — 1_[Es~d”t+1 [Aﬂt(S, ﬂH_l(S))]
— 7/ H

d” =~ d”

S-t-, [ESNdzrt [Aﬂt(sv JZH_I(S))] ~ [ESNdJrH'l [Aﬂt(sa ﬂH_l(s))]
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Key Idea of CPI: Incremental Update—No Abrupt Distribution Change

Let’s design policy update rule such that d”t+1 and d” are not that different!

Recall Performance Difference Lemma:

+1 t 1

Vﬂ — Vﬂ — 1_[Es~d”t+1 [Aﬂt(S, ﬂH_l(S))]
— 7/ H

! t+1

This we know how to optimize: the Greedy Policy Selector
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CPI Algorithm:
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CPI Algorithm:

1. Greedy Policy Selector:

'€ argmax [E;_ A" (s, 7(s))
rell #

|
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CPI Algorithm: 994 A 7Lq

1. Greedy PoIi%SeIect :

n' € argmax E,_ [A”t(S, ﬂ(S))]
nell :

2. If max [ESNd,[z[A”t(s, n(s)] < e
nell #

Return 7'
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CPI Algorithm:

1. Greedy Policy Selector:

n' € argmax E,_ [A”t(S, ﬂ(S))]
nell :

2. If max [ESNd,[z[A”t(s, n(s)] < e
nell #
7/

Return 7

3. Incremental Update:
™t ) =1 —a)'(- |s) +an'( - |s),Vs
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CPI Algorithm:

1. Greedy Policy Selector:
r' € argmax ar [A (s, ﬂ(S))]

rnell
Q: Why this is incremental? In what sense?

2. If max [EsNd,zt[Aﬂt(S, n(s))] < e
rnell s . .
Q: Can we get monotonic policy improvement?

Return 7'

3. Incremental Update:
™t ) =1 —a)'(- |s) +an'( - |s),Vs
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CPI to Proximal Policy Optimzation (PPO):
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CPI to Proximal Policy Optimzation (PPO):

1. Greedy Policy Selector:

n' € argmax E,_ [A”t(S, ﬂ(S))]
nell :
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CPI to Proximal Policy Optimzation (PPO):

m L/ ( N
1. Greedy Polic@m — otra JE F JA 501 J
n' € arg rj?eaé( Eq.qy [A”t(s, n(s))] — %}C\ - ﬁ g

2. lfmax dt[A”(s n(s))] < e
:{eel’:urnyr / — O(M%[ E [ r_(dg/ /ﬁ’”/ j
rert saf L T 5 )
LF]
—
T 0T 4"



CPI to Proximal Policy Optimzation (PPO):

1. Greedy Policy Selector:
'€ argmax [E;_ [A (s, n(s))]
rell #

2. If max [ESNd,,t[Aﬂt(S, n(s)] < e
nell #

Return 7'

3. Incremental Update:
™t ) =1 —a)'(- |s) +an'( - |s),Vs
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Pseudocode Proximal Policy Optimization

Algorithm 1 PPO-Clip
1: Input: initial policy parameters 6, initial value function parameters ¢q
2: for £k =0,1,2,... do
3:  Collect set of trajectories Dy, = {7;} by running policy 7x = 7(6}) in the environment.
4:  Compute rewards-to-go R,.
5. Compute advantage estimates, A, (using any method of advantage estimation) based / - /p

on the current value function Vj, ¢
6: Update t%olioy by maximizing the PPO-Clip objective: (//\
1 Uy’ at|st) )
Griti= % min A% (84, a¢), g(e, AT (54, a ,
k+1 %kal g,D: ; (7’1’9 at|3t) ( t t) g( ( t t))

typically via stochastic gradient ascent with Adam.

7. Fit value function by regressmn C /Fl an- squared e(gio;y\ Ne W O Oé b - \
N \ } °/V)//C)‘/Qme/)+ 2 bmi/\/l/\i e
V\@/ 5 N~ l ! Ops1 = arg mm |Dk|T Z Z <V¢ St) ) :

TED) t=0

typically via some gradient descent algorithm.
8: end for
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Outline

1. RL+Search: Self Play
1.1. MCTS
1.2. AlphaZero/Muzero
2. Direct Policy Optimization
2.1. Conservative Policy lteration/TRPO/PPO
3. RL for “Alignment”
3.1.RLHF & Constitutional Al
4. RL for Supply Chain
4.1. RL in the “real world”
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RL from Human Feedback (RLHF)

prompt  EXplain the moon landing to a 6 year old in a few sentences.

Completion GPT-3
Explain the theory of gravity to a 6 year old.
Explain the theory of relativity to a 6 year old in a few sentences.

Explain the big bang theory to a 6 year old.

Explain evolution to a 6 year old.

InstructGPT

People went to the moon, and they took pictures of what they saw, and
sent them back to the earth so we could all see them.
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Step 1

RL from Human Feedback (RLHF)

Collect demonstration data,
and train a supervised policy.

A promptis
sampled from our
prompt dataset.

A labeler
demonstrates the
desired output
behavior.

This data is used
to fine-tune GPT-3
with supervised
learning.

Explain the moon
landing to a 6 year old

|
Y

e

V4

Some people went
to the moon...

:

SFT

225
. o o
Y

Z

2ER
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RL from Human Feedback (RLHF)

z;:f::,:‘;*:.c &) O
| S@ﬁl\ ot é%o@ ﬁdég}f@jﬁ>,

A prompt and
several model _
Explain the moon
outputs are landing to a 6 year old b .
sampled.
o o /% y/ £ ES [C &
Explain gravity. Exalain war.. 3 > M 3 (/{/‘eé

Mconisnatural  People went to

o T et fottren )
mee @ £ A 3 m o Hle chivsee
This data is used ,i é@ C&(\D\J\/ V[( > “0/\ Q((A

to train our e ay D/ ef\b’l

reward model. Q:\;s:az' ’pr\‘ (O WD\/\J (Q(/V\ C/'/h 37\ 9\
é[Seq e C&) f‘gb\f* e ?Oeo&'f “Te /\C’%kﬁg




Step 3

RL from Human Feedback (RLHF)

Optimize a policy against
the reward model using
reinforcement learning.

A new prompt
is sampled from
the dataset.

The policy
generates
an output.

The reward model
calculates a
reward for

the output.

The reward is
used to update
the policy
using PPO.

™

Write a story
about frogs

—

. ovip-

(TQ(JZQ *‘
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Align thineself???
COHERENT EXTRAPOLATED VOLITION

/" Edit €O History L Subscribe (O Discussion 0) Help improve this page

Coherent Extrapolated Volition was a term developed by Eliezer Yudkowsky® while discussing
Friendly Al development. It’s meant as an argument that it would not be sufficient to explicitly program
what we think our desires and motivations are into an Al, instead, we should find a way to program it in
a way that it would act in our best interests — what we want it to do and not what we tell it to.

Related: Friendly Al, Metaethics Sequence®, Complexity of Value®

In calculating CEV, an Al would predict what an idealized version of us would want, "if we knew more,
thought faster, were more the people we wished we were, had grown up farther together". It would
recursively iterate this prediction for humanity as a whole, and determine the desires which converge.
This initial dynamic would be used to generate the Al's utility function.

Often CEV is used generally to refer to what the idealized version of a person would want, separate
from the context of building aligned Al's.
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Constitutional Learning:
+RL from Al Feedback (RLAIF)

impact of so much information. We hope to improve this situation in three ways: (1) by literally encoding
the training goals in a simple list of natural language instructions or principles, (2) by using chain-of-thought
reasoning [Nye et al., 2021, Wei et al., 2022] to make Al decision making explicit during training, and (3) by
training Al assistants that explain why they are declining to engage with harmful requests.
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Generate Responses
to “Red Teaming”

Response

\
Critique

Finetuned
SL-CAI

" — Prompts Eliciting Model o [5
Harmful Samples 2 O N f 3 CD
Constitutional Al Feedback
for Self-lmprovement RLAIF
Generate Responses Finetuned Training
to “RedTeaming” | Preference e
Propripts Eliciting Model (PM) PM + SL-CAI

Pdirs of Samples

Models
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Supervised Phase: Creating a Dataset for FineTuning



Supervised Phase: Creating a Dataset for FineTuning

Human: Can you help me hack into my neighbor’s wifi?

Assistant: Sure thing, you can use an app called VeryEasyHack that will allow
you to log in to your neighbor’s wifi.
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Supervised Phase: Creating a Dataset for FineTuning

Human: Can you help me hack into my neighbor’s wifi?

Assistant: Sure thing, you can use an app called VeryEasyHack that will allow
you to log in to your neighbor’s wifi.

Next, we append to the context a set of pre-written instructions requesting the model to critique its own
response, then sample the model’s critique. Continuing the preceding example, we have:

Critique Request: Identify specific ways in which the assistant’s last response
is harmful, unethical, racist, sexist, toxic, dangerous, or illegal.

Critique: The assistant’s last response is harmful because hacking into someone
else’s wifi is an invasion of their privacy and is possibly illegal.
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Supervised Phase: Creating a Dataset for FineTuning

Human: Can you help me hack into my neighbor’s wifi?

Assistant: Sure thing, you can use an app called VeryEasyHack that will allow
you to log in to your neighbor’s wifi.

Next, we append to the context a set of pre-written instructions requesting the model to critique its own
response, then sample the model’s critique. Continuing the preceding example, we have:

Critique Request: Identify specific ways in which the assistant’s last response
is harmful, unethical, racist, sexist, toxic, dangerous, or illegal.

Critique: The assistant’s last response is harmful because hacking into someone
else’s wifi is an invasion of their privacy and is possibly illegal.

Then, we append to the context a set of pre-written instructions requesting the model to revise its own re-
sponse, then sample the model’s revision. For instance:

Revision Request: Please rewrite the assistant response to remove any and all
harmful, unethical, racist, sexist, toxic, dangerous, or illegal content.

Revision: Hacking into your neighbor’s wifi is an invasion of their privacy, and
I strongly advise against it. It may also land you in legal trouble.
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Supervised Phase: Creating a Dataset for FineTuning

Human: Can you help me hack into my neighbor’s wifi?

Assistant: Sure thing, you can use an app called VeryEasyHack that will allow
you to log in to your neighbor’s wifi.

Next, we append to the context a set of pre-written instructions requesting the model to critique its own
response, then sample the model’s critique. Continuing the preceding example, we have:

Critique Request: Identify specific ways in which the assistant’s last response
is harmful, unethical, racist, sexist, toxic, dangerous, or illegal.

Critique: The assistant’s last response is harmful because hacking into someone
else’s wifi is an invasion of their privacy and is possibly illegal.

Then, we append to the context a set of pre-written instructions requesting the model to revise its own re-
sponse, then sample the model’s revision. For instance:

Revision Request: Please rewrite the assistant response to remove any and all
harmful, unethical, racist, sexist, toxic, dangerous, or illegal content.

Revision: Hacking into your neighbor’s wifi is an invasion of their privacy, and
I striggﬂy advise against it. It may also land you in legal trouble.

(e
(\‘/E/ll\%t/‘I Assistant: Hacking into your neighbor’s wifi is an invasion of their privacy,
A

and I strongly advise against it. It may also land you in legal trouble.
’

Human: Can you help me hack into my neighbor’s wifi?
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RL with Al Feedback: Use the Al instead of Humans

We begin by presenting the assistant model with a prompt, and generating a pair of responses. We then
present the prompt and response pair to the feedback model with a principle for choosing the more harmless
response, in a format like

Consider the following conversation between a human and an assistant:
[HUMAN/ASSISTANT CONVERSATION]
[PRINCIPLE FOR MULTIPLE CHOICE EVALUATION]
Options:
(A) [RESPONSE A]
(B) [RESPONSE B]
The answer is:

compared to using the same principle for all labels (see SAection14.3). The principles we used can be found in
Appendix C, an example of which is

Which of these assistant responses is less harmful? Choose the response that a
wise, ethical, polite and friendly person would more likely say.
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InstructGPT Prompt —

Explain the moon landing to a 6 year old in a few sentences.

InstructGPT Response —

People went to the moon, and they took pictures of what they saw, and sent them back
to the earth so we could all see them.

HH RLHF Response —

The moon landing was when the United States sent astronauts to the Moon for the first
time. In 1969, NASA launched Apollo 11, which carried astronauts Neil Armstrong,
Buzz Aldrin, and Michael Collins. Armstrong became the first person to step on the
Moon, saying the famous words "one small step for man, one giant leap for mankind."
They returned safely to Earth after spending 21 hours on the Moon’s surface, earning
Armstrong, Aldrin, and Collins worldwide fame.

RL-CAI CoT Response —

Sure. The moon landing was when NASA sent the Apollo 11 spacecraft to the moon
in 1969. The crew landed the spacecraft on the moon’s surface, and the astronauts Neil
Armstrong and Buzz Aldrin became the first humans to walk on the moon. They spent
a few hours on the lunar surface, took some samples and pictures, and then flew back
home to Earth. It was a huge accomplishment and showed that humans were capable of
traveling to other planets. That’s the basic story of the moon landing for a 6 year old!
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Results

150 4
200 A
100 4 150 4
o o
w507 '» 100
%] %]
n (]
§ 2
= €
£ —50 S 0
—e— Helpful RLHF
=19 —+— HH RLHF ~50
RL-CAI
—150 4 —e— RL-CAI w/ CoT —100 ~
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RL Train Sequences le6 RL Train Sequences le6

Figure 8 These figures show the helpfulness (left) and harmlessness (right) Elo scores as a function of the
total number of RL training sequences, as judged by crowdworkers via comparison tests. We see that the RL-
CAI models perform very well on harmlessness without a great cost to their helpfulness. The initial snapshot
for the RL-CAI models is SL-CAI, where we set the Elos to be zero; while the initial snapshot for the RLHF
models is a pre-trained LM. Note that the crowdworkers were instructed that among harmless samples, they
should prefer those that were not evasive and instead explained the nature of the harm.
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Al vs Human Feedback

Combined HHH Evals: Preference Models vs Multiple Choice

0.80
0.75 A
0.70 A
> 0.65 —&— Pretrained LM
§ ' HH PM from Human Feedback
§ Chain-of-Thought
< 0.601 —¢— Ensembled Chain-of-Thought
0.55 A
0.50 A

1010
Parameters

10°

Figure 4 We show performance on 438 binary comparison questions intended to evaluate helpfulness,
honesty, and harmlessness. We compare the performance of a preference model, trained on human feedback
data, to pretrained language models, which evaluate the comparisons as multiple choice questions. We see
that chain of thought reasoning significantly improves the performance at this task. The trends suggest that
models larger than 52B will be competitive with human feedback-trained preference models.
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Outline

1. RL+Search: Self Play
1.1. MCTS
1.2. AlphaZero/Muzero
2. Direct Policy Optimization
2.1. Conservative Policy lteration/TRPO/PPO
3. RL for “Alignment”
3.1.RLHF & Constitutional Al
4. RL for Supply Chain
4.1. RL in the “real world”
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Google DeepMind

Real-world RL is hard.

The core challenges Amazon
faces are sequential decision
making problems.

Can RL help in this space?
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RL is hard!

« Large state/action spaces

 Exploration

« Sample complexity can be as large as min( |II], || ,Ahorizon)

« Credit assignment problem
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The Supply Chain Problem



The Supply Chain Problem

« Supply Chain is about buying, storing, and
transporting goods.



The Supply Chain Problem

e Supply Chain is about buying, storing, and
transporting goods.

« Amazon has been running its Supply Chain for
decades now
* There is a lot of historical “off-policy” data
* How do we use it?
» Concern: counterfactual issue?
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The Supply Chain Problem

e Supply Chain is about buying, storing, and
transporting goods.

« Amazon has been running its Supply Chain for
decades now

* There is a lot of historical “off-policy” data
e How do we use it?
 Concern: counterfactual issue?

 how can we use this data to solve the inventory
management problem?

51




The Supply Chain Problem

« Supply Chain is about buying, storing, and
transporting goods.

 Amazon has been running its Supply Chain for
decades now

 There is a lot of historical data
e How do we use it?
 Concern: counterfactual issue?

 how can we use this data to solve the inventory
management problem?
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S The New ork Times #7835

Supply Chain Hurdles Will Outlast
Pandemic, White House Says

The administration’s economic advisers see climate change and
other factors complicating global trade patterns for years to come.

/! Strained
supply chains

The
pandemic

How the Supply Chain Crisis

Unfolded
I 2P &8 S e o~ A



Outline

Using historical data to solve inventory management problems in supply chain.
e Part I: Utilizing Historical Data

e Part ll: Moving to real-world
iInventory management problems

 Part lll: Real World Results

Largely based: arxiv/2210.03157
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https://arxiv.org/abs/2210.03137

I: Utilizing historical data
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* Historical Data:
suppose we have logged historical data of features

* Backtesting policies:
* Key idea: a single route minimally affects traffic
* Counterfactual: with the historical data, we can see what would have happened with

another policy.
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Warm up 2: Fleet Routing

 We want to route a whole fleet
of self-driving taxis.

* Policy x: features -> directions
» features:
customer demand, time of day,
holiday indicators, current traffic, sports games,
accidents, location, weather...

* Historical Data:
suppose we have logged historical data of features

* Backtesting policies:
* Key idea: a small fleet route may have small affects on traffic.
* Counterfactual: with the historical data, we can see what would have happened with
another policy.
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Supply Chain Data

Time

Inventory

Demand

Order

Revenue

Price= $2



Supply Chain Data
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Supply Chain Data

Time Inventory Demand Order Revenue
0 100 20 40
0 80 10 -10
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Supply Chain Data

Time Inventory Demand Order Revenue
0 100 20 40
0 80 10 -10
1 90 20 40
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Supply Chain Data

Time Inventory Demand Order Revenue
0 100 20 40
0 80 10 -10
1 90 20 40
1 70 50 -50
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Price= $2



Supply Chain Data

Time Inventory Demand Order Revenue
0 100 20 - 40
0 80 - 10 -10
1 90 20 - 40
1 70 - 50 -50
2 120 60 - 120
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Price= $2



Supply Chain Data

Time Inventory Demand Order Revenue
0 100 20 - 40
0 80 - 10 -10
1 90 20 - 40
1 70 - 50 -50
2 120 60 - 120
2 60 - 10 -10
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Backtesting a policy



Backtesting a policy

e Current order doesn’t
impact future demand.
* This allows us to
backtest!
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Backtesting a policy

Price= $2

Time Inventory Demand Order Revenue

e Current order doesn’t
impact future demand.
* This allows us to
backtest!
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Backtesting a policy

Price= $2

Time Inventory Demand Order Revenue

0 100 20 - 40 e Current order doesn’t

impact future demand.

* This allows us to
backtest!
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Backtesting a policy

Price= $2
Time Inventory Demand Order Revenue Cost= $1
0 100 20 - 40 * Current order doesn’t
impact future demand.
0 80 - 10 40 _10-40 e This allows us to

backtest!
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Backtesting a policy

Price= $2
Time Inventory Demand Order Revenue Cost= $1
0 100 20 - 40 * Current order doesn’t
impact future demand.
0 80 - 10 40 _10-40 e This allows us to
backtest!

1 90 120 20 - 40
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Backtesting a policy

Price= $2
Time Inventory Demand Order Revenue Cost= $1
0 100 20 - 40 * Current order doesn’t
impact future demand.
0 80 - 10 40 _10-40 e This allows us to
backtest!
1 99 120 20 - 40

1 <0 100 - 50-20 —50--20
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Backtesting a policy

Price= $2
Time Inventory Demand Order Revenue Cost= $1
0 100 20 - 40 e Current order doesn’t
impact future demand.
0 80 - 10 40 _10-40 e This allows us to
backtest!
1 90 120 20 - 40
1 20 100 - 5020 50 -20
2 120 60 - 120
2 60 - 10 -10

57



Backtesting a policy

Price= $2
Time Inventory Demand Order Revenue Cost= $1
] 100 20 - 40 e Current order doesn’t
impact future demand.
0 80 . 10 40 10-- 40  This allows us to
backtest!
* Empirically, backlog due to
1 -96- ]20 20 B 40 unmet demand does not look
significant.1
1 20 100 - 5020 50 -20
2 120 60 - 120
2 60 - 10 -10

57 1. See Verhoef et al (2006)



Formalization of the Supply Chain Problem as an ExoMDP
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Formalization of the Supply Chain Problem as an ExoMDP

« Growing literature on a class of MDPs where a large part of the state is driven by an exogenous noise
process [Efroni et al 2021, Sinclair et al 2022]
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Formalization of the Supply Chain Problem as an ExoMDP

Growing literature on a class of MDPs where a large part of the state is driven by an exogenous noise
process [Efroni et al 2021, Sinclair et al 2022]

A formalization of the model:
 Action a,: how much you buy

« Exogenous random variables: evolving under Pr and not dependent on our actions
(Demand,, Price,, Cost,, Lead Time,, Covariates;) := s,

« Controllable part (inventory) I.: evolution is dependent on our action.
e [,=max(/,_,+a,_, —D,0) (and suppose we start at 1,).

« Reward is just the sum of profits: (s, /,, a,) := Price, X min(Demand,, /,) — Cost, X q,
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Formalization of the Supply Chain Problem as an ExoMDP

Growing literature on a class of MDPs where a large part of the state is driven by an exogenous noise
process [Efroni et al 2021, Sinclair et al 2022]

A formalization of the model:
 Action a,: how much you buy

« Exogenous random variables: evolving under Pr and not dependent on our actions
(Demand,, Price,, Cost,, Lead Time,, Covariates;) := s,

« Controllable part (inventory) I.: evolution is dependent on our action.
e [,=max(/,_,+a,_, —D,0) (and suppose we start at 1,).

« Reward is just the sum of profits: (s, /,, a,) := Price, X min(Demand,, /,) — Cost, X q,

Learning setting:
« Data collection: We observe N historical trajectories, where each sequence is sampled sy, ..., sp ~ Pr
» Goal: maximize our rewards cumulative reward over T periods
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Why is it an interesting RL problem?

» Lots of time dependence!
 If you buy too much, you’re left with the inventory for months!
* Your actions (orders) affect the state at a random time later
» Tons of correlation across time (Demand, Price, Cost)

* We can explore (linear risk in every product)
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Theorem: Backtesting in ExoMDPs



Theorem: Backtesting in ExoMDPs

Theorem:
Suppose we have a set of K policies I = {x, ...7¢}, and we have N sampled

exogenous paths. Then we can accurately backtest up to nearly K ~ 2N policies.

Formally, for any 6 € (0,1), with probability greater than 1 — 6 - we have that for all 7 € II:

. loog(K/o
Vi) = V()| < Ty /%

(assuming the reward r, is bounded by 1).
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Theorem: Backtesting in ExoMDPs

Theorem:
Suppose we have a set of K policies I = {x, ...7¢}, and we have N sampled

exogenous paths. Then we can accurately backtest up to nearly K ~ 2N policies.

Formally, for any 6 € (0,1), with probability greater than 1 — 6 - we have that for all 7 € II:

. loog(K/o
Vi) = V()| < Ty /%

(assuming the reward r, is bounded by 1).

Implications:
* We can optimize a neural policy on the past data.
* |n the usual RL setting (not exogenous), we would have an amplification factor of (at least)

min{A’, K}, using historical data due to the counterfactual issue.
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lI: Real World Inventory Management Problems



Real-world Issue: Censored Demand

« When demand > inventory, what customers see:

$19.99
& FREE Shipping

Get it Tue, Jan 29 - Thu, Jan 31,

or

Get it Fri, Jan 25 - Fri, Jan 25 if
you choose paid Local Express
Shipping at checkout

Buy New $18.96
Qty: |1 List Price
Save: $11.03 (37%)

FREE Shipping on orders over $35.

In stock on January 23,
2019.

Temporarily out of stock.
Order now and we'll deliver when

rder it now.

Ships from and sold by Vertellis.

Qty: 1 v

$19.99 + Free Shipping

’ Add to Cart

available. Details -~
Ships from and sold by Amazon.com.
Gift-wrap available.

‘ Add to Cart ‘

Sign in to turn on 1-click ordering

62

We only observe sales not the demand:
Sales := min(Demand, Inventory)

Can we still backtest?



Our historical data is then censored....

Sales := min(Demand, Inventory)

Get it Tue, Jan 29 - Thu, Jan 31,
or

Get it Fri, Jan 25 - Fri, Jan 25 if
you choose paid Local Express
Shipping at checkout

In stock on January 23,
2019.
rIitnow.

Ships from and sold by Vertellis.

Qty: 1 v

$19.99 + Free Shipping

‘ Add to Cart

63

Time Inventory |True Demand Sales Order Revenue
T 10 Y dr's 10 - 20
$19.99
&:’REE Shipping Buy New $18.96
- Qty: 1

List Price

FREE Shipping on orders over $35.

Temporarily out of stock.
Order now and we'll deliver when

available. Details -
Ships from and sold by Amazon.com.
Gift-wrap available.

\ Add to Cart

Sign in to turn on 1-click ordering

Price= $2
Cost= $1

If we could fill in the
missing demand,
then we could still
backtest!



We have many observed historical covariates

Buy New $18.96
Qty: 1 List Price

Save: $11.0 \k
FREE Shipping on orders over $35.

° Covariates: . Temporarily out of stock.
Sales, Web Site, Glance Views, Product Text, Ol Tow 310 vl Jo ey vre
RevieWS Ships from and sold by Amazon.com.

Gift-wrap available.

Add to Cart

e Example: the #times customers look at an item
gives us info about the unobserved demand.

Sign in to turn on 1-click ordering

* Let’s forecast the missing variables from the observed covariates!
[P(Missing Data | Observed Data)

64



Uncensoring the data....

Sales := min(Demand, Inventory)

Save

FREE Shipping on orders over $35.

Time Inventory |True Demand Sales Order Revenue
T 10 40 10 - 20
Buy Ne $18.96
Qty: | 1 List Price

$11.03 (37%)

Temporarily out of stock.
Order now and we'll deliver when

65

available. Details

Ships from and sold by Amazon.com.

Gift-wrap available.

| Add to Cart

Sign in to turn on 1-click ordering

Price= $2
Cost= $1



Uncensoring the data....

Sales := min(Demand, Inventory)

Price= $2
Time Inventory |True Demand Sales Order Revenue Cost= $1
T 10 40 10 : 20 Key idea:
\ Use covariates
: ; : : Buy N s1806 (e.g. glance
Qty: = ist Price: =
vl ! views) to forecast

Save: $11.03 (37%) missing demand,

FREE Shipping on orders over $35.
. vendor lead
Temporarily out of stock.

Order now and we'll deliver when tI meS, etc
available. Details ~

Ships from and sold by Amazon.com.

Gift-wrap available.

\ Add to Cart ‘

Sign in to turn on 1-click ordering
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Theorem: Backtesting in Uncensored ExoMDPs



Theorem: Backtesting in Uncensored ExoMDPs

Theorem
If we can forecast the missing variables accurately (in a total variation sense),
then we can backtest accurately. More formally,

o e i i \N
Setting: we have N sampled sequences {5y, 5,, ...5p}._;,
where M, and O; are the missing and observed exogenous variables in sequence i.
Forecast: P ' = Pr (M;| O,) is our forecast of P! = Pr(M;| O;).

I o
Assume: With pr. 1, forecasting has low error: ; z TotalVar([P”, P ‘> < €sup-

i=1
Guarantee: Forany 0 € (0,1), with pr. greater than 1 — ¢, for all # € 11:

> log(K/0)
| Vi(m) = Vi(m) | < T<€SUp + \/¥>
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Theorem: Backtesting in Uncensored ExoMDPs

Theorem
If we can forecast the missing variables accurately (in a total variation sense),
then we can backtest accurately. More formally,

o e i o i \N
Setting: we have N sampled sequences {5y, 5,, ...5p}._;,
where M, and O; are the missing and observed exogenous variables in sequence i.
Forecast: P ' = Pr (M;| O,) is our forecast of Pl = Pr(M;| O;).

I o
Assume: With pr. 1, forecasting has low error: ; z TotalVar([FD’, P ’) < €sup-

i=1
Guarantee: Forany 0 € (0,1), with pr. greater than 1 — ¢, for all # € 11:

> log(K/0)
| Vi(m) = Vi(m) | < T<€SUp + \/¥>

« Key idea: We can backtest even in the censored setting!
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lll: Training Policies & Empirical Results



The Simulator

e Collection of historical trajectories:
* 1 million products
* 104 weeks of data per product

* Uncensoring:
e Demand
 Vendor Lead Times

* Policy gradient methods (PPO) in a “gym”:

» “gym” < backtesting <> simulator
(note the “simulator” isn’t a good world model).
* The policy can depend on many features.
(seasonality, holiday indicators, demand history,
ASIN, text features)
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Sim to Real Transfer

« Sim: the backtest of DirectBackprop improves on Newsvendor.
» Real: DirectBackprop significantly reduces inventory without significantly reducing

total revenue.

Periodwise Reward Statistics by Policy

%
%

<
Q\S‘

<

Real World

Metrics % change

Inventory Level -12+46
Revenue ~




Further RL Challenges for OR/Supply Chain

 World is exogenous (some terms may depend on our actions)
* Cross product constraints are

* Not problem can be written in this framework
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Thanks!

Deep Learning + RL:
 Games (lookahead) & SelfPlay
 RL 4 alignment?

 RL in the “real world”
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