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[AlphaZero, Silver et.al, 17] [OpenAI Five, 18]

Progress of RL in Practice
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Fascination with AI and Games…
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• DeepBlue v. Kasparov (1997)
• winning in chess wasn’t a good indicator of 

“progress in AI”

Fascination with AI and Games…
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Game Trees

• In principle, one could work out the optimal 
strategy for any zero-sum game with 
lookahead.


• Note that, even with exact computation, we 
don’t necessarily have to expand all nodes.

Figure not fully expanded.
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AlphaBeta Search
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AlphaBeta Search

• For every move, we build a lookahead tree (and repeat).
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AlphaBeta Search

• For every move, we build a lookahead tree (and repeat).
• The algorithm maintains two values, alpha and beta, which respectively 

represent the score that the maximizing player is assured of getting and the 
score that the minimizing player is assured of getting. 
• Assume opponents will always try to do “best responses”
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AlphaBeta Search

• For every move, we build a lookahead tree (and repeat).
• The algorithm maintains two values, alpha and beta, which respectively 

represent the score that the maximizing player is assured of getting and the 
score that the minimizing player is assured of getting. 
• Assume opponents will always try to do “best responses”

• Before every move, try to figure out a good move by lookahead.
• Need a heuristic for how to choose actions (i.e. which branches to search)
• Try to prune away as may branches as we can.
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MCTS: 
Monte Carlo Tree Search

• AlphaBeta pessimistic approach may not lead to effective heuristics.

• MCTS: for every move, we build a lookahead tree; take an action; and repeat. 
• We are some node “s”.

• We use a heuristic to estimate the “value” of taking action “a” at any node “s”  

(We don’t directly compute minmax values).

• Four steps to the algorithm.
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• Selection: Start from “root R” (current game) and select successive child nodes until a “leaf 
node L” (a node that has an “unvisited” child) is reached.
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node L” (a node that has an “unvisited” child) is reached.
• A leaf is any node that has a potential child from which no simulation (rollout) has yet 

been initiated (i.e. we haven’t tried all the actions at L).
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• Selection: Start from “root R” (current game) and select successive child nodes until a “leaf 
node L” (a node that has an “unvisited” child) is reached.
• A leaf is any node that has a potential child from which no simulation (rollout) has yet 

been initiated (i.e. we haven’t tried all the actions at L).
• At state , choose action  leading to  which maximizes:s a s′ = NextState(s, a)

	 	 UCB score(a) = #wins at s'
#visits to s'

+ C × log(total visits to s)
#visits to s'
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• Expansion: Stop Selection at a leaf node L. Unless leaf L ends the game decisively (e.g. 
win/loss/draw) for either player, create a child node (a new node) and choose this node C.

• This step just creates a new node.

10



• Simulation: Complete a “playout/rollout” from this new node C till the game ends.

• Simplest approach:  choose uniform at random moves until the game ends.
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• “Backpropagation” (the update step): Use the result of the rollout to update information in 
the nodes on the path from the root R to C.
• Update the total # of wins and # visits on this path.
• # wins at at a node is the number of previous wins from any sim from this node.  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• “Backpropagation” (the update step): Use the result of the rollout to update information in 
the nodes on the path from the root R to C.
• Update the total # of wins and # visits on this path.
• # wins at at a node is the number of previous wins from any sim from this node.  

• Repeat all steps N times, then select “best” action at the root node R (the game state).
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AlphaGo
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• Lots of moving parts:

• Imitation Learning: first, the algo estimates the values from historical games.

• It then uses an MCTS-stye lookahead with learned value functions.


• AlphaZero (2017) is was a simpler more successful approach.



AlphaZero

• AlphaZero: MCTS + DeepLearning

• There is a value network and policy network:

• a value network estimating for the state of the board , for a player

• A policy network  that is a probability vector over all possible actions.  

• These are fit with training data  under the loss function:  
 
	 	  

• We’ll come back to how we get this data, but let’s see how we select actions.

vθ(s)
⃗p θ(a |s)

(st, at, Rt)

Loss(θ) = ∑
t

(vθ(st) − Rt)2 − log pθ(at |st)
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AlphaZero
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AlphaZero

• Selection and Simulation: Start from “root R” (current game) and do a rollout of no more 
than  steps. K
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AlphaZero

• Selection and Simulation: Start from “root R” (current game) and do a rollout of no more 
than  steps. K
• At state , choose action  leading to  which maximizes:s a s′ = NextState(s, a)

	 	 UCB score(a) = AvValue(s′ ) + C ⋅ pθ(a |s) ⋅ log(total visits to s)
#visits to s'
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AlphaZero

• Selection and Simulation: Start from “root R” (current game) and do a rollout of no more 
than  steps. K
• At state , choose action  leading to  which maximizes:s a s′ = NextState(s, a)

	 	 UCB score(a) = AvValue(s′ ) + C ⋅ pθ(a |s) ⋅ log(total visits to s)
#visits to s'

• We’ll specify  soon. AverageValue(s′ )

• in MCTS, this average was 
#wins at s'
#visits to s'
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AlphaZero
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AlphaZero

• “Backpropagation” (the update step):  
Suppose the Simulation ends at node  after  steps.  
With the rollout result, update AvValue( ) on all the nodes  in the path from the root R to 
terminal node C:  

 

 

C K
s s

AvValue(s) ← N(s)
N(s) + 1 AvValue(s) + 1)

N(s) + 1 vθ(C)

N(s) ← N(s) + 1
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AlphaZero

• “Backpropagation” (the update step):  
Suppose the Simulation ends at node  after  steps.  
With the rollout result, update AvValue( ) on all the nodes  in the path from the root R to 
terminal node C:  

 

 

C K
s s

AvValue(s) ← N(s)
N(s) + 1 AvValue(s) + 1)

N(s) + 1 vθ(C)

N(s) ← N(s) + 1

• Repeat all steps N times, then select “best” action at the root node R (the game state).
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AlphaZero: Learning

• Collect training data  from self-play. Then fit:  
 
	 	

(st, at, Rt)

Loss(θ) = ∑
t

(vθ(st) − Rt)2 − log pθ(at |st)
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AlphaZero: Learning

• Collect training data  from self-play. Then fit:  
 
	 	

(st, at, Rt)

Loss(θ) = ∑
t

(vθ(st) − Rt)2 − log pθ(at |st)
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MuZero

19

• MuZero

• Basically AlphaZero but we don’t know game rules.

• We learn the transition function as we play.
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Markov Decision Process

Policy: determine action based on state

Multiple Steps

Send reward and next state from a 
Markovian transition dynamics

r(s, a), s′ ∼ P( ⋅ |s, a)

Learning 
Agent Environmen

a ∼ π(s)

s0 ∼ μ0, a0 ∼ π(s0), r0, s1 ∼ P(s0, a0), a1 ∼ π(s1), r1…
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Infinite horizon Discounted MDP

ℳ = {S, A, P, r, μ0, γ}
P : S × A ↦ Δ(S), r : S × A → [0,1], γ ∈ [0,1)
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Infinite horizon Discounted MDP

ℳ = {S, A, P, r, μ0, γ}
P : S × A ↦ Δ(S), r : S × A → [0,1], γ ∈ [0,1)

Policy π : S ↦ Δ(A)

Value function Vπ(s) = , [
∞

∑
h=0

γhr(sh, ah) s0 = s, ah ∼ π(sh), sh+1 ∼ P( ⋅ |sh, ah)]
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Infinite horizon Discounted MDP

ℳ = {S, A, P, r, μ0, γ}
P : S × A ↦ Δ(S), r : S × A → [0,1], γ ∈ [0,1)

Policy π : S ↦ Δ(A)

Value function Vπ(s) = , [
∞

∑
h=0

γhr(sh, ah) s0 = s, ah ∼ π(sh), sh+1 ∼ P( ⋅ |sh, ah)]
Q function Qπ(s, a) = , [

∞

∑
h=0

γhr(sh, ah) (s0, a0) = (s, a), ah ∼ π(sh), sh+1 ∼ P( ⋅ |sh, ah)]
22



Bellman Consistency Equations  
and the Advantage Function
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Bellman Consistency Equations  
and the Advantage Function

Vπ(s) = ,a∼π(s) [r(s, a) + γ,s′ ∼P(⋅|s,a)Vπ(s′ )]
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Bellman Consistency Equations  
and the Advantage Function

Vπ(s) = ,a∼π(s) [r(s, a) + γ,s′ ∼P(⋅|s,a)Vπ(s′ )]

Qπ(s, a) = r(s, a) + γ,s′ ∼P(⋅|s,a)Vπ(s′ )
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Bellman Consistency Equations  
and the Advantage Function

Vπ(s) = ,a∼π(s) [r(s, a) + γ,s′ ∼P(⋅|s,a)Vπ(s′ )]

Qπ(s, a) = r(s, a) + γ,s′ ∼P(⋅|s,a)Vπ(s′ )

Aπ(s, a) = Qπ(s, a) − Vπ(s)
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State action occupancy measures and Advantages

: probability of  visiting  at time step , starting at ℙh(s, a; s0, π) π (s, a) h ∈ ℕ s0

dπ
s0

(s, a) = (1 − γ)
∞

∑
h=0

γhℙh(s, a; s0, π)

Vπ(s0) = 1
1 − γ ∑

s,a
dπ

s0
(s, a)r(s, a)
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State action occupancy measures and Advantages
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(s, a) = (1 − γ)
∞

∑
h=0

γhℙh(s, a; s0, π)

Vπ(s0) = 1
1 − γ ∑

s,a
dπ

s0
(s, a)r(s, a)

Advantage function: Aπ(s, a) = Qπ(s, a) − Vπ(s)

24



State action occupancy measures and Advantages

: probability of  visiting  at time step , starting at ℙh(s, a; s0, π) π (s, a) h ∈ ℕ s0

dπ
s0

(s, a) = (1 − γ)
∞

∑
h=0

γhℙh(s, a; s0, π)

Vπ(s0) = 1
1 − γ ∑

s,a
dπ

s0
(s, a)r(s, a)

Advantage function: Aπ(s, a) = Qπ(s, a) − Vπ(s)
Notation: dπ

μ(s) = (1 − γ)
∞

∑
h=0

γhℙπ
h(s; μ)
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Policy Iteration

Monotonic improvement of PI: Vπt+1(s) ≥ Vπt(s), ∀s

πt+1(s) = arg max
a

Aπt(s, a)

Contraction to :Q*

25
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Policy Iteration

Monotonic improvement of PI: Vπt+1(s) ≥ Vπt(s), ∀s

πt+1(s) = arg max
a

Aπt(s, a)

Contraction to :Q*

However, for large scale, unknown MDPs, we are not able 
to compute/estimate  at all , so how can we do 
a policy update? 

Aπ(s, a) s, a

25



Recap

Recall Policy Iteration (PI):
π′ (s) = arg max

a
Aπ(s, a)
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Recap

Recall Policy Iteration (PI):

Performance Difference Lemma (PDL): for all s0 ∈ S

π′ (s) = arg max
a

Aπ(s, a)

26



Recap

Recall Policy Iteration (PI):

Performance Difference Lemma (PDL): for all s0 ∈ S

Vπ′ (s0) − Vπ(s0) = 1
1 − γ

,s,a∼dπ′ 
s0

[Aπ(s, a)]

π′ (s) = arg max
a

Aπ(s, a)
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Recap

Recall Policy Iteration (PI):

Performance Difference Lemma (PDL): for all s0 ∈ S

Vπ′ (s0) − Vπ(s0) = 1
1 − γ

,s,a∼dπ′ 
s0

[Aπ(s, a)]

π′ (s) = arg max
a

Aπ(s, a)

Monotonic improvement of PI: Vπt+1(s) − Vπt(s) = 1
1 − γ

,s∼dt+1s0 [max
a∈A

Aπt(s, a)] ≥ 0

26



Proof of PDL Vπ(s0) − Vπ′ (s0) = 1
1 − γ

,s,a∼dπs0 [Aπ′ (s, a)]
π0 = {π′ , …, π′ }, π1 = {π, π′ , …, π′ }, π2 = {π, π, π′ , …, π′ }, . . . π∞ = {π, …, π}

Vπ(s0) = Vπ∞(s0), Vπ′ (s0) = Vπ0(s0)

Vπn+1(s0) − Vπn(s0)

= γn,sn∼ℙn(⋅;s0,π) (Qπ′ (sn, π(sn)) − Vπ′ (sn))
= γn,sn∼ℙn(⋅;s0,π) (Aπ′ (sn, π(sn)))

Telescoping: Vπ′ − Vπ =
∞

∑
n=0

Vπn − Vπn+1

= γn,sn∼ℙn(⋅;s0,π) (r(sn, π(sn)) + γ,sn+1∼Psn,π(sn)
Vπ′ (sn+1) − Vπ′ (sn))

27



Attempt One: Approximate Policy Iteration (API)
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Attempt One: Approximate Policy Iteration (API)

Given the current policy , let’s act greedily wrt  under πt π dπt

μ

i.e., let’s aim to (approximately) solve the following program:

arg max
π∈Π

,s∼dπt
μ [Aπt(s, π(s))] Greedy Policy Selector
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arg max
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,s∼dπt
μ [Aπt(s, π(s))] Greedy Policy Selector

But we can only sample from ,  and we can only get an approximation of dπt

μ Aπt(s, a)
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Attempt One: Approximate Policy Iteration (API)

Given the current policy , let’s act greedily wrt  under πt π dπt

μ

i.e., let’s aim to (approximately) solve the following program:

arg max
π∈Π

,s∼dπt
μ [Aπt(s, π(s))] Greedy Policy Selector

But we can only sample from ,  and we can only get an approximation of dπt

μ Aπt(s, a)

We can hope for an Approximate Greedy Policy Selector a reduction to Regression

28



Algorithm: Approximate Policy Iteration (API)

API:    πt+1 ∈ arg max
π∈Π

,s,a∼dπt
μ [Aπt(s, π(s))]

Iterate:
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Algorithm: Approximate Policy Iteration (API)

API:    πt+1 ∈ arg max
π∈Π

,s,a∼dπt
μ [Aπt(s, π(s))]

Iterate:

Question: 

(1) Does API have monotonic improvement? 

(2) Does it convergence? 

Monotonic Improvement Not Guaranteed:  
Vπt+1(s) − Qπt(s) = 1

1 − γ
,s,a∼dt+1s0 [At(s, a)]

29



Conservative Policy Iteration—An Incremental Policy Optimization Approach
(And the benefit of being incremental)

30



Key Idea of CPI: Incremental Update—No Abrupt Distribution Change

Let’s design policy update rule such that  and  are not that different!  dπt+1 dπt
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Key Idea of CPI: Incremental Update—No Abrupt Distribution Change

Let’s design policy update rule such that  and  are not that different!  dπt+1 dπt

Recall Performance Difference Lemma: 

Vπt+1 − Vπt = 1
1 − γ

,s∼dπt+1
μ [Aπt(s, πt+1(s))]

dπt ≈ dπt+1

s.t.,  ,s∼dπt [Aπt(s, πt+1(s))] ≈ ,s∼dπt+1 [Aπt(s, πt+1(s))]
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Key Idea of CPI: Incremental Update—No Abrupt Distribution Change

Let’s design policy update rule such that  and  are not that different!  dπt+1 dπt

Recall Performance Difference Lemma: 

Vπt+1 − Vπt = 1
1 − γ

,s∼dπt+1
μ [Aπt(s, πt+1(s))]

dπt ≈ dπt+1

s.t.,  ,s∼dπt [Aπt(s, πt+1(s))] ≈ ,s∼dπt+1 [Aπt(s, πt+1(s))]
This we know how to optimize: the Greedy Policy Selector

31



CPI Algorithm:
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CPI Algorithm:

1. Greedy Policy Selector: 

π′ ∈ arg max
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,s∼dπt

μ [Aπt(s, π(s))]
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CPI Algorithm:

1. Greedy Policy Selector: 

π′ ∈ arg max

π∈Π
,s∼dπt

μ [Aπt(s, π(s))]
2. If max

π∈Π
,s∼dπt

μ
[Aπt(s, π(s))] ≤ ε

Return πt
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CPI Algorithm:

1. Greedy Policy Selector: 

π′ ∈ arg max

π∈Π
,s∼dπt

μ [Aπt(s, π(s))]

3. Incremental Update: 

πt+1( ⋅ |s) = (1 − α)πt( ⋅ |s) + απ′ ( ⋅ |s), ∀s

2. If max
π∈Π

,s∼dπt
μ
[Aπt(s, π(s))] ≤ ε

Return πt
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CPI Algorithm:

1. Greedy Policy Selector: 

π′ ∈ arg max

π∈Π
,s∼dπt

μ [Aπt(s, π(s))]

3. Incremental Update: 

πt+1( ⋅ |s) = (1 − α)πt( ⋅ |s) + απ′ ( ⋅ |s), ∀s

2. If max
π∈Π

,s∼dπt
μ
[Aπt(s, π(s))] ≤ ε

Return πt Q: Can we get monotonic policy improvement? 

Q: Why this is incremental? In what sense? 
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CPI to Proximal Policy Optimzation (PPO):
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CPI to Proximal Policy Optimzation (PPO):

1. Greedy Policy Selector: 

π′ ∈ arg max

π∈Π
,s∼dπt

μ [Aπt(s, π(s))]
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CPI to Proximal Policy Optimzation (PPO):

1. Greedy Policy Selector: 

π′ ∈ arg max

π∈Π
,s∼dπt

μ [Aπt(s, π(s))]
2. If max

π∈Π
,s∼dπt

μ
[Aπt(s, π(s))] ≤ ε
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CPI to Proximal Policy Optimzation (PPO):

1. Greedy Policy Selector: 

π′ ∈ arg max

π∈Π
,s∼dπt

μ [Aπt(s, π(s))]

3. Incremental Update: 

πt+1( ⋅ |s) = (1 − α)πt( ⋅ |s) + απ′ ( ⋅ |s), ∀s

2. If max
π∈Π

,s∼dπt
μ
[Aπt(s, π(s))] ≤ ε

Return πt
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Proximal Policy Optimization
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RL from Human Feedback (RLHF)
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RL from Human Feedback (RLHF)
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RL from Human Feedback (RLHF)
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RL from Human Feedback (RLHF)
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Align thineself???
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Constitutional Learning: 
+RL from AI Feedback (RLAIF)
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Supervised Phase: Creating a Dataset for FineTuning
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Supervised Phase: Creating a Dataset for FineTuning
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RL with AI Feedback: Use the AI instead of Humans
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Results
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AI vs Human Feedback
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49

Real-world RL is hard.

The core challenges Amazon 
faces are sequential decision 
making problems. 
 
Can RL help in this space?



RL is hard!

• Large state/action spaces


• Exploration 


• Sample complexity can be as large as 


• Credit assignment problem

min( |Π | , |S | , Ahorizon)

50



The Supply Chain Problem
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The Supply Chain Problem
• Supply Chain is about buying, storing, and 

transporting goods.
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Outline

Using historical data to solve inventory management problems  in supply chain. 

• Part I: Utilizing Historical Data


• Part II: Moving to real-world  
inventory management problems


• Part III: Real World Results

Largely based: arxiv/2210.03137

52

https://arxiv.org/abs/2210.03137


I: Utilizing historical data
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Warm up: Vehicle Routing 
(when using historical data might be ok)

• We want a good policy for routing  
a single car.


• Policy : features -> directions  
features: 
time of day, holiday indicators,  
current traffic, sports games,  
accidents, location, weather,


• Historical Data:  
suppose we have logged historical data of features  

• Backtesting policies:

• Key idea: a single route minimally affects traffic

• Counterfactual: with the historical data, we can see what would have happened with 

another policy.

π
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Warm up 2: Fleet Routing

• We want to route a whole fleet  
of self-driving taxis. 

• Policy : features -> directions 

• features: 

customer demand, time of day,  
holiday indicators, current traffic, sports games,  
accidents, location, weather… 

• Historical Data:  
suppose we have logged historical data of features  

• Backtesting policies:

• Key idea: a small fleet route may have small affects on traffic. 

• Counterfactual: with the historical data, we can see what would have happened with 

another policy.

π
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Supply Chain Data

56



Supply Chain Data

Time Inventory Demand Order Revenue

Price= $2

Cost= $1
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Supply Chain Data

Time Inventory Demand Order Revenue

0 100 20 - 40

0 80 - 10 -10

1 90 20 - 40

Price= $2

Cost= $1
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Supply Chain Data

Time Inventory Demand Order Revenue

0 100 20 - 40

0 80 - 10 -10

1 90 20 - 40

1 70 - 50 -50

Price= $2

Cost= $1
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Supply Chain Data

Time Inventory Demand Order Revenue

0 100 20 - 40

0 80 - 10 -10

1 90 20 - 40

1 70 - 50 -50

2 120 60 - 120

Price= $2

Cost= $1
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Supply Chain Data

Time Inventory Demand Order Revenue

0 100 20 - 40

0 80 - 10 -10

1 90 20 - 40

1 70 - 50 -50

2 120 60 - 120

2 60 - 10 -10

Price= $2

Cost= $1
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Backtesting a policy
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Backtesting a policy

• Current order doesn’t 
impact future demand.
• This allows us to 

backtest!
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0 100 20 - 40

Price= $2

Cost= $1


• Current order doesn’t 
impact future demand.
• This allows us to 

backtest!
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Backtesting a policy

Time Inventory Demand Order Revenue

0 100 20 - 40

0 80 -   10   40     -10 -40

Price= $2

Cost= $1


• Current order doesn’t 
impact future demand.
• This allows us to 

backtest!
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Backtesting a policy

Time Inventory Demand Order Revenue

0 100 20 - 40

0 80 -   10   40     -10 -40

1     90   120 20 - 40

Price= $2

Cost= $1


• Current order doesn’t 
impact future demand.
• This allows us to 

backtest!
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Backtesting a policy

Time Inventory Demand Order Revenue

0 100 20 - 40

0 80 -   10   40     -10 -40

1     90   120 20 - 40

1     70   100 -  50  20     -50 -20

Price= $2

Cost= $1


• Current order doesn’t 
impact future demand.
• This allows us to 

backtest!
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Backtesting a policy

Time Inventory Demand Order Revenue

0 100 20 - 40

0 80 -   10   40     -10 -40

1     90   120 20 - 40

1     70   100 -  50  20     -50 -20

2 120 60 - 120

2 60 - 10 -10

Price= $2

Cost= $1


• Current order doesn’t 
impact future demand.
• This allows us to 

backtest!
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Backtesting a policy

Time Inventory Demand Order Revenue

0 100 20 - 40

0 80 -   10   40     -10 -40

1     90   120 20 - 40

1     70   100 -  50  20     -50 -20

2 120 60 - 120

2 60 - 10 -10

Price= $2

Cost= $1


• Current order doesn’t 
impact future demand.
• This allows us to 

backtest!
• Empirically, backlog due to 

unmet demand does not look 
significant.1

1. See Verhoef et al (2006)57



Formalization of the Supply Chain Problem as an ExoMDP
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Formalization of the Supply Chain Problem as an ExoMDP

• Growing literature on a class of MDPs where a large part of the state is driven by an exogenous noise 
process [Efroni et al 2021, Sinclair et al 2022]
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Formalization of the Supply Chain Problem as an ExoMDP

• Growing literature on a class of MDPs where a large part of the state is driven by an exogenous noise 
process [Efroni et al 2021, Sinclair et al 2022]

• A formalization of the model:
• Action : how much you buy at
• Exogenous random variables: evolving under  and not dependent on our actions Pr

(Demandt, Pricet, Costt, Lead Timet, Covariatest) := st
• Controllable part (inventory) : evolution is dependent on our action. It

•  (and suppose we start at ).It = max(It−1 + at−1 − Dt,0) I0
• Reward is just the sum of profits: r(st, It, at) := Pricet × min(Demandt, It) − Costt × at
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Formalization of the Supply Chain Problem as an ExoMDP

• Growing literature on a class of MDPs where a large part of the state is driven by an exogenous noise 
process [Efroni et al 2021, Sinclair et al 2022]

• A formalization of the model:
• Action : how much you buy at
• Exogenous random variables: evolving under  and not dependent on our actions Pr

(Demandt, Pricet, Costt, Lead Timet, Covariatest) := st
• Controllable part (inventory) : evolution is dependent on our action. It

•  (and suppose we start at ).It = max(It−1 + at−1 − Dt,0) I0
• Reward is just the sum of profits: r(st, It, at) := Pricet × min(Demandt, It) − Costt × at

• Learning setting:
• Data collection: We observe  historical trajectories, where each sequence is sampled N s1, …, sT ∼ Pr
• Goal: maximize our rewards cumulative reward over T periods

VT(π) = Eπ[
T

∑
t=1

γtr(st, It, at)]
58



Why is it an interesting RL problem?

• Lots of time dependence!


• If you buy too much, you’re left with the inventory for months!


• Your actions (orders) affect the state at a random time later


• Tons of correlation across time (Demand, Price, Cost)


• We can explore (linear risk in every product)
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Theorem: Backtesting in ExoMDPs
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Theorem: Backtesting in ExoMDPs
Theorem: 
Suppose we have a set of K policies , and we have  sampled 
exogenous paths. Then we can accurately backtest up to nearly  policies.

Π = {π1, …πK} N
K ≈ 2N

 
Formally, for any , with probability greater than  - we have that for all : 

                              

(assuming the reward  is bounded by 1).

δ ∈ (0,1) 1 − δ π ∈ Π

|VT(π) − ̂VT(π) | ≤ T
log(K/δ)

N
rt
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• Implications: 
• We can optimize a neural policy on the past data.
• In the usual RL setting (not exogenous), we would have an amplification factor of (at least) 

, using historical data due to the counterfactual issue.min{AT, K}



II: Real World Inventory Management Problems

61



Real-world Issue: Censored Demand
• When , what customers see: demand ≥ inventory

We only observe sales not the demand: 
 

Can we still backtest? 

Sales := min(Demand, Inventory)
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Our historical data is then censored….

Time Inventory True Demand Sales Order Revenue

T 10 ?? 10 - 20

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

Price= $2

Cost= $1


Sales := min(Demand, Inventory)

If we could fill in the 
missing demand, 
then we could still 
backtest!

63



We have many observed historical covariates

• Covariates:  
Sales, Web Site, Glance Views, Product Text,  
Reviews


• Example: the #times customers look at an item  
gives us info about the unobserved demand.  
 

• Let’s forecast the missing variables from the observed covariates! 
ℙ̂(Missing Data |Observed Data)
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Uncensoring the data….

Time Inventory True Demand Sales Order Revenue

T 10 40 10 - 20

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

Price= $2

Cost= $1


Sales := min(Demand, Inventory)
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Uncensoring the data….

Time Inventory True Demand Sales Order Revenue

T 10 40 10 - 20

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

Price= $2

Cost= $1


Sales := min(Demand, Inventory)

Key idea: 
Use covariates 
(e.g. glance 
views) to forecast 
missing demand, 
vendor lead 
times, etc
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Theorem: Backtesting in Uncensored ExoMDPs
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Theorem: Backtesting in Uncensored ExoMDPs
Theorem 
If we can forecast the missing variables accurately (in a total variation sense),  
then we can backtest accurately. More formally,
Setting: we have  sampled sequences ,  
               where  and  are the missing and observed exogenous variables in sequence .  

Forecast:  is our forecast of . 

Assume: With pr. 1, forecasting has low error: . 

Guarantee: For any , with pr. greater than , for all :    

N {si
1, si

2, …si
T}N

i=1
Mi Oi i

̂ℙ i = ̂Pr (Mi |Oi) ℙi = Pr(Mi |Oi)
1
N

N

∑
i=1

TotalVar(ℙi, ̂ℙ i) ≤ ϵsup

δ ∈ (0,1) 1 − δ π ∈ Π

66

|VT(π) − ̂VT(π) | ≤ T (ϵsup + log(K/δ)
N )
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T}N
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∑
i=1

TotalVar(ℙi, ̂ℙ i) ≤ ϵsup

δ ∈ (0,1) 1 − δ π ∈ Π
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• Key idea: We can backtest even in the censored setting!

|VT(π) − ̂VT(π) | ≤ T (ϵsup + log(K/δ)
N )



III: Training Policies & Empirical Results
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The Simulator

• Collection of historical trajectories:

• 1 million products

• 104 weeks of data per product


 
• Uncensoring:

• Demand

• Vendor Lead Times 

• Policy gradient methods (PPO) in a “gym”: 

• “gym”  backtesting  simulator 

(note the “simulator” isn’t a good world model).

• The policy can depend on many features.  

(seasonality, holiday indicators, demand history, 
ASIN, text features) 

↔ ↔

Data

Corrections

Simulator
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Sim to Real Transfer
• Sim: the backtest of DirectBackprop improves on Newsvendor.

• Real:  DirectBackprop significantly reduces inventory without significantly reducing 

total revenue. 

Simulation Real World

Re
wa

rd
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Further RL Challenges for OR/Supply Chain

• World is not perfectly exogenous (some terms may depend on our actions)


• Cross product constraints are computationally intensive


• Not every Supply Chain problem can be written in this framework
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Thanks!

Deep Learning + RL: 

• Games (lookahead) & SelfPlay


• RL 4 alignment?


• RL in the “real world”
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