
CS 229br: Foundations of Deep Learning

Boaz Barak
Gal KaplunGustaf Ahdritz

Lecture 6: Training Dynamics Part 2

Zona Kostic

Plan:

Part I: Overview of interventions and their impacts
• Computational, optimization, and generalization efficiency
• Learning rate, batch size, normalization, preconditioning

Part II: Empirical phenomena and toy models
• Simplicity Bias, Deep bootstrap, edge of stability, scaling laws
• Kernels, Nearest-Neighbors, Depth 2 nets, linear nets

Theory of Deep Learning?
Mechanistic:
Give causal mechanisms that fully explain observed phenomena

Theory of X?

Predictive:
Give predictions without explaining mechanism behind them

Classical mechanics

Economics

Models:
Give fully explained toy models with qualitatively accurate predictions

Statistical mechanics

Optimization

$ spent

Er
ro

r o
n

ta
sk

 y
ou

ca

re
 a

bo
ut

(or time or FLOPs)

Acknowledgements: Roger Grosse, Horace He, Nikhil Vyas, Gustaf&Gal

$ spentEr
ro

r o
n

ta
sk

 y
ou

ca

re
 a

bo
ut

$ spent

To
ke

ns

pr
oc

es
se

d

Tokens
processed

Tr
ai

n
lo

ss

Train loss

Te
st

 L
os

s

Er
ro

r o
n

ta
sk

yo

u
ca

re
 a

bo
ut

Test Loss

Optimization Goals
Computational Efficiency (CE): Maximize the number of tokens we can
process per $ (or per FLOP or per second)

Optimization Efficiency (OE): Maximize the reduction in training loss per
tokens processed

Generalization Efficiency (GE): Maximize the reduction in validation loss
per unit of reduction in train loss

Downstream Efficiency (DE): Maximize performance in downstream tasks
as function of validation loss. Too messy at the moment

to give general principles

Interventions

Increase Learning Rate
Precondition Gradient: Apply diagonal (Adam), Factored (K-FAC, Shampoo),
general (Natural Gradient) operation to gradient.

Weak normalization: Normalize means and magnitude of activations
(layer/batch norm)

Whitening: Normalize activation covariance.

Increase Batch Size:
Increase number of tokens processed in parallel

CE:

OE:

GE:

Candish et al 2018

Improve wall clock time (better utilization
/ parallelization)

No harm up to point

Worse if not compensated via LR

Increase Batch Size:
Increase number of tokens processed in parallel

https://arxiv.org/abs/1812.06162

CE:

OE:

GE:

neutral

Complicated – generally a “goldilocks” regime, but NN can adapt
(see “edge of stability”). Sometimes lower LR could yield faster
optimization at expense of generalization.

Larger LR often leads to better generalization conditioned on train

Increase Learning Rate
LR

Schedules?

Precondition Gradient: Apply diagonal (Adam), Factored (K-FAC, Shampoo),
general (Natural Gradient) operation to gradient.

CE:

OE:

GE:

From small to large overhead.

Often speeds up training.

Sometimes solutions generalize worse, though can be mitigated
through training params. Generally, more “knobs” to tune so can
always recover SGD performance.

Choi et al 2019

[Amari et al 20]

https://arxiv.org/abs/1910.05446
https://arxiv.org/abs/2006.10732

CE:

OE:

GE:

Small to moderate (compute statistics)

Generally speeds up optimization

Unclear (see Brock et al 2021)

Weak normalization: Normalize means and magnitude of activations
(layer/batch norm)

Yao et al, ICCV 21

https://arxiv.org/abs/2102.06171
https://openaccess.thecvf.com/content/ICCV2021W/NeurArch/papers/Yao_Leveraging_Batch_Normalization_for_Vision_Transformers_ICCVW_2021_paper.pdf

CE:

OE:

GE:

Significant (need to compute covariances)

Generally speeds up optimization

Could be very negative

Whitening: Normalize activation covariance.

More interventions

• Momentum, exponential moving averages

• Gradient clipping
• Dropout
• More layers, wider layers
• Choosing random seed from the bible.
• Wearing your lucky underwear when training.

Part II: Optimization phenomena

• Simplicity Bias: SGD prefers simpler minimizers.
[Nakkiran et al 2019]

• Deep Bootstrap: Multiple epochs behave like a single one
[Nakkiran et al 2020]

• Edge of stability: The local loss surface of neural nets ”progressively
sharpen” and then stays on the the edge of diverging away.
[Cohen et al 2021]

• Scaling laws: Test loss curves follow somewhat predictable functional form,
as function of data, model size, and computational steps.
[Kaplan et al 2020, Rosenfeld et al 2019, Hoffman et al 2022]

https://arxiv.org/abs/1905.11604
https://arxiv.org/abs/2010.08127
https://arxiv.org/abs/2103.00065
https://arxiv.org/abs/2001.08361
https://arxiv.org/abs/1909.12673
https://arxiv.org/abs/2203.15556

SGD Learns simple concepts first

Nakkiran, Kaplun, Kalimeris, Yang, Edelman, Yang, Zhang, B. 2020

Simplicity bias is a good thing…
A random 𝑓 fitting 𝑥! , 𝑦! !"#..% will never generalize.

𝒙 𝒇(𝒙)

𝑥! 𝑦!

𝑥" 𝑦"

𝑥# 𝑦#

… …

𝑥$ 𝑦$

𝒙 __

… and a bad thing

Example:

Simple solution
has high error

Simple solution
has low error

Depth 2 network

𝐴! 𝜎𝑥

Depth 2 linear network

Parameter space: ℝ%×'('×) Parameter space: ℝ%×'('×)

Linear model

Parameter space: ℝ%×)

𝐵𝑥 = 𝐴"𝐴!𝑥:
Same expressiveness /
functional space

Different parameter space

𝐴"

Toy Model: Deep Linear Networks

Linear model

Parameter space: ℝ%×)

Depth 2 linear network

Parameter space: ℝ%×'('×)

min ℒ(𝐵) min ℒ(𝐴!, 𝐴")=
For every loss function ℒ:

SGD/GD on ↑ SGD/GD on ↑≠
BUT

Convex function in
𝐵 ∈ ℝ%×)

Non-convex function in
(𝐴!, 𝐴") ∈ ℝ%×'('×)

Simplifying assumptions: 𝐴# = 𝐴& symmetric
⇒ 𝐵 = 𝐴", 𝐴 = 𝐵

Linear model

Parameter space: ℝ%×)

Depth 2 linear network

Parameter space: ℝ%×'('×)

Analyze GD with 𝜂 → 0 on min 8ℒ(𝐴) where 8ℒ 𝐴 = ℒ(𝐴")

𝐴𝐴𝐵 = 𝐴"

Gradient flow on deep linear nets

Gradient flow on deep linear nets 'ℒ 𝐴 = ℒ(𝐴&)

𝑑𝐴(𝑡)
𝑑𝑡

= −∇ 'ℒ(A t)

By chain rule ∇ 8ℒ 𝐴 = ∇ℒ 𝐴" 𝐴

𝐵 = 𝐴&

:∇ ∇

= A∇ℒ 𝐴"

𝑑𝐵(𝑡)
𝑑𝑡

= −∇ℒ(B t)

GF on linear model:

𝑑𝐵(𝑡)
𝑑𝑡

= −𝐴 ∇ℒ 𝐵 𝑡 𝐴 = − 𝐵 ∇ℒ 𝐵 𝑡 𝐵

GF on deep linear net 𝐵 = 𝐴":
“The big get

bigger”

:∇= 𝐴∇

𝑑𝐴"(𝑡)
𝑑𝑡

=
𝑑𝐴(𝑡)
𝑑𝑡

⋅ 𝐴Hence = −:∇ ⋅ 𝐴 = −𝐴 ⋅ ∇ ⋅ 𝐴

* dropping 2’s throughout

𝑑𝐵(𝑡)
𝑑𝑡

= −𝐴 ∇ℒ 𝐵 𝑡 𝐴 = − 𝐵 ∇ℒ 𝐵 𝑡 𝐵

GF on deep linear net 𝐵 = 𝐴":

Generally GF on deep linear net 𝐵 evolves* by 𝑑𝐵(𝑡)
𝑑𝑡

= −𝜓' ((∇ℒ 𝐵 𝑡)

𝜓! ∇ =∗ $𝐵# ∇𝐵$%#

Saxe, McClelland, Ganguli 2013
Arora, Cohen, Hazan, 2018
Bah, Rauhut, Terstiege, Westdickenberg, 2019

Gradient flow on a Riemannian Manifold * not equivalent to minℒ 𝐵 + 𝜆 𝑅(𝐵)

Riemannian Manifolds
External description: A smooth subset ℳ ⊆ ℝ*

Intrinsic description: Set ℳ with “local geometry” at each 𝑥 ∈ ℳ

For every 𝑥 ∈ ℳ, tangent space 𝑇+ - set of directions we can move in

(Gradient of 𝑓(𝑥): shortest direction from 𝑥 to increase 𝑓)

local inner product on 𝑇+ - defined via PSD matrix 𝑀+ on 𝑇+

Does over-parameterization matter?
Deep Bootstrap [Nakkiran, Neyshabur, Sedghie ICLR ‘21]

Compare 100 epochs on 50K samples w/ 1 epoch on 5M samples.

Cartoon: Over-param test
Over-param train
Online test

Er
ro

r

0

1

Interpolation
threshold

Iterations

Real (multiple epochs) vs
Ideal (online) diverge at point

of interpolation
𝑠𝑎𝑚𝑝𝑙𝑒𝑠 ≈ # 𝑝𝑎𝑟𝑎𝑚𝑠

Does over-parameterization matter?
Deep Bootstrap [Nakkiran, Neyshabur, Sedghie ICLR ‘21]

Compare 100 epochs on 50K samples w/ 1 epoch on 5M samples.

Cartoon: Over-param test
Over-param train
Online test

Er
ro

r

0

1

Interpolation
threshold

Iterations

Conclusions: To get better performance

Over-param train
Online test

Er
ro

r

0

1

Interpolation
threshold

Over-param test
Optimize

faster in online

Interpolate later in
multi-epoch

Even in online setting, no reason to stop before # 𝑠𝑡𝑒𝑝𝑠 ≈ 𝑚𝑜𝑑𝑒𝑙 𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦

Toy model: Kernel Methods
Linear Regression: Input: 𝑥#, 𝑦#, … , 𝑥% , 𝑦% ∈ ℝ)*#

Goal: Find 𝑤 ∈ 𝑅) minimizing ∥ 𝑋𝑤 − 𝑦 ∥&

”Kernel Trick”: Suppose 𝑛 ≪ 𝑑 , we want 𝑤 = ∑! 𝛼!𝑥!

“black box” for ⟨𝑥, 𝑥!⟩ ⇒ compute in A𝑂(𝑛) instead of A𝑂(𝑑)

Given new point 𝑥∗, 𝑤, 𝑥∗ = 𝑥∗𝑋𝑤 = ∑𝛼!⟨𝑥∗, 𝑥!⟩

Be able to compute x∗ ↦ ⟨𝑥,𝑤⟩

𝛼 = argmin ∥ 𝑋𝑋,𝛼 − 𝑦 ∥&

“Look Ma no 𝑑“
𝑛 equations in
𝑛 variables

Need: Implicit representation of 𝑥 ∈ ℝ) + alg for dot products

Ultra wide NNs
≈ Kernels

Deep Boostrap, Simplicity bias and Kernel / LR
K𝐿 𝜃

Training
loss

Online setting: 𝔼∇𝐿%-!./ = 0

Over-param train
Online testEr

ro
r

0

1
Interpolation
threshold

Over-param test

Memorization -
fitting noise

Generalization -
fitting signal

= 𝐿.!0%12 𝜃 + 𝐿%-!./(𝜃)

Simplicity bias and deep bootstrap

Notebook by Chris Zhang, Dami Choi, Anqi (Joyce) Yang

https://colab.research.google.com/drive/1zoPIpPJ7mEXsJnzClGpz_sjt5ZnEm65g?usp=sharing

“Scaling Laws”

Kaplan et al 20 Rosenfeld 19

Strong version

𝐿(𝑁, 𝐷)

Model
size Data*

size

“Conjecture”: For all “reasonable” architecture and tasks

𝐿 𝑁, 𝐷 ≈
𝐴
𝑁3 +

𝐵
𝐷4

+ 𝐸
𝛼, 𝛽 independent of

architecture /
algorithm

Chinchilla: 𝛼, 𝛽 ≈ 0.3 (𝛼 ≈ 0.34 , 𝛽 ≈ 0.28) , 𝐷 ∝ 𝑁

Kaplan et al: 𝛼 ≈ 0.08 , 𝛽 ≈ 0.1 , 𝐷 ∝ 𝑁5.67

Optimum is
𝐷 ∝ 𝑁!/#

* Assume “ideal” single epoch training

Are scaling laws broken?

LLaMA As function of compute

What seems true Large Model

Small Model

Total ComputeTokens Processed

Lo
ss

Lo
ss

Breakeven
point

Toy model: 𝑘-Nearest Neighbor
Assume that ”under the hood”, training deep net on data 𝑥#, 𝑦#…𝑥; , 𝑦;
corresponds to:

• Learning somehow a 𝑑-dimensional manifold and embedding 𝜑 of
𝑥! ’s into this manifold.

• Model’s output on new 𝑥 obtained by combining 𝑦’s for 𝑘 𝑥! ’s
closest to 𝑥 in this manifold (Interpolating classifier: 𝑘 = 1)

Not mechanistic, but can still make qualitative & quantitative predictions

Predictions of 𝑘-NN model

For every 𝑥, there would be small set 𝑆(𝑥) of points in training set that
greatly influence 𝑓(𝑥)

Whether 𝑥 influences 𝑥′ induces a meaningful distance

Datamodels [Ilyas, Park, Engstrom, Leclerc, Madry ‘22]

Datamodels [Ilyas, Park, Engstrom, Leclerc, Madry ‘22]

Distributional Generalization [Nakkiran-Bansal’20]
tra

in
te

st

0 1Optimal loss minimizer:

Scaling laws from nearest neighbor

Test
Point

Nearest
Neighbor

ℝ)

𝑟

• 𝑉𝑜𝑙 𝐵/ ∝ 𝑟%
• 𝑟 ∝ 𝑁0!/%

Edge of Stability

GD: a𝑤(*# = 𝐼 −
𝜂
2
𝐻 a𝑤(

a𝑤(≔ 𝑤(−𝑤=

Convergence requires 𝜆>?@(𝐻) <
&
A

Lo
ss

Sh
ar

pn
es

s

Sharpness

𝜂 big
𝜂 small

Expect: Actual [Cohen et al 2021]

https://arxiv.org/abs/2103.00065

Progressive Sharpening Edge of Stability

Focus on
𝜂 = 2/110

Explaining edge of stability
[Zhu et al 2023]

𝐿 𝑥, 𝑦 =
1
4
1 − 𝑥&𝑦& &

∇𝜆>?@ 𝐻 = ∇C𝐿 ⋅ 𝑣>?@
⊗&

[Damian et al 22]

https://arxiv.org/abs/2210.03294
https://arxiv.org/abs/2209.15594

