
CS 229br: Foundations of Deep Learning

Boaz Barak

Gal KaplunGustaf Ahdritz

Lecture 5: Training Dynamics Part 1

Zona Kostic

Project proposal due 3/20

Yann LeCun’s Response

In the history of science and technology, the engineering
artifacts have almost always preceded the theoretical
understanding: the lens and the telescope preceded optics
theory, the steam engine preceded thermodynamics, the
airplane preceded flight aerodynamics, radio and data
communication preceded information theory, the computer
preceded computer science.

It is this kind of attitude that led the ML community to abandon neural
nets for over 10 years ... with their non-convex loss functions, [NNs] had
no guarantees of convergence (though they did work in practice then,
just as they do now).
So people threw the baby with the bath water and focused on "provable"
convex methods or glorified template matching methods …
Sticking to a set of methods just because you can do theory about it,
while ignoring a set of methods that empirically work better just because
you don't (yet) understand them theoretically is akin to looking for your
lost car keys under the street light knowing you lost them someplace
else.

Yann LeCun’s Response

Roger Grosse’s comments

Asking “why does Batch Norm help?” is like asking an organic chemist
“what does Nitrogen do?”

What are the mysteries of deep learning?

(discussion)

Training Dynamics

Parameters Outputs

Training depth-2 ReLU on exp loss - Lénaïc Chizat

Optimization

min
!∈𝒞

𝐿 𝜃

*Images: Tom Goldstein lab

min
!∈𝒞

𝐿 𝜃 𝐿:ℝ! → ℝ

Access to 𝐿:

• Value oracle 𝐿:ℝ! → ℝ
• Gradient: ∇𝐿:ℝ! → ℝ!

• Hessian: ∇"𝐿:ℝ! → ℝ!!

• Restricted: Experts / Bandits / RL
Constraints:

• Explicit
• Implicit: membership or separation oracle
• Can replace with regularizer 𝜆 ⋅ 𝑏(𝜃)

Thm: If 𝐿 (strongly) convex and 𝒞
convex then following are
equivalent:
• 𝜃 is global minimum
• 𝜃 is local minimum
• ∇L(𝜃) = 0!

Or
estimators

Optimization in (self) supervised learning
Distribution 𝑥 ∼ 𝑋, Loss 𝐿 𝜃 = 𝔼#∼%[𝐿# 𝜃]

𝜃

Parameter
Space

Neural
Net Output

Space

Loss
Real Numbers

Convex
Space

Convex
Space Convex

map
Non-linear

map

Iterative optimization algorithms

• 𝜃& = something
• 𝜃'() = 𝜃' + 𝛿 for 𝛿 ”small” and (on average) 𝐿 𝜃'() “smaller” than 𝐿(𝜃')

∇𝐿 𝜃 ⋅ 𝛿 ≤ 𝐿 𝜃 + 𝛿 − 𝐿 𝜃 ≈ ∇𝐿 𝜃 ⋅ 𝛿 +
1
2
𝛿*∇" 𝜃 𝛿

Linear Regression

“half of neural net phenomena can be explained by reasoning about linear
networks” Roger Grosse

Move to whiteboard

Iterative optimization algorithms

• 𝜃& = something
• 𝜃'() = 𝜃' + 𝛿 for 𝛿 ”small” and (on average) 𝐿 𝜃'() “smaller” than 𝐿(𝜃')

∇𝐿 𝜃 ⋅ 𝛿 ≤ 𝐿 𝜃 + 𝛿 − 𝐿 𝜃 ≈ ∇𝐿 𝜃 ⋅ 𝛿 +
1
2
𝛿*∇" 𝜃 𝛿

Gradient Descent: 𝜃'() = 𝜃' − 𝜂 ⋅ 𝐼 ⋅ ∇𝐿(𝜃)

• 𝜃& = something
• 𝜃'() = 𝜃' + 𝛿 for 𝛿 ”small” and (on average) 𝐿 𝜃'() “smaller” than 𝐿(𝜃')

Trust Region: 𝜃'() = arg min
+ ,,," ./

𝐿(𝜃)

Proximal: 𝜃'() = argmin 𝐿 𝜃 + 𝜆 ⋅ 𝑑 𝜃, 𝜃'

𝜂 → 0 ⇔ 𝜆 → ∞

Projected GD: 𝜃'() = 𝑃𝑟𝑜𝑗 𝜃 𝑑 𝜃, 𝜃' ≤ 𝜂 𝜃 − ∇L(𝜃)

Optimization in (self) supervised learning
Distribution 𝑥 ∼ 𝑋, Loss 𝐿 𝜃 = 𝔼#∼%[𝐿# 𝜃]

𝜃

Parameter
Space

Neural
Net Output

Space

Loss
Real Numbers

Convex
Space

Convex
Space Convex

map
Non-linear

map

Extra: Double Descent

Nakkiran, Kaplun, Bansal, Yang, Barak, Sutskever

Extra: Double Descent

𝑋"𝑋 =
𝜆# ⋯
⋮ ⋱ ⋮

⋯ 𝜆$

𝑑 < 𝑛 𝑑 ≈ 𝑛 𝑑 > 𝑛

Random 𝑋:

Extra: Double Descent

Layers

Zhang, Bengio, Singer 2019
Raghu, Gilmer, Yosinski, Sohl-Dickstein, 2017

similarity to final state

randomness just for symmetry breaking!

