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Yann LeCun’s Response

In the history of science and technology, the engineering 
artifacts have almost always preceded the theoretical 
understanding: the lens and the telescope preceded optics 
theory, the steam engine preceded thermodynamics, the 
airplane preceded flight aerodynamics, radio and data 
communication preceded information theory, the computer
preceded computer science.



It is this kind of attitude that led the ML community to abandon neural 
nets for over 10 years ... with their non-convex loss functions, [NNs] had 
no guarantees of convergence (though they did work in practice then, 
just as they do now). 
So people threw the baby with the bath water and focused on "provable" 
convex methods or glorified template matching methods  … 
Sticking to a set of methods just because you can do theory about it, 
while ignoring a set of methods that empirically work better just because 
you don't (yet) understand them theoretically is akin to looking for your 
lost car keys under the street light knowing you lost them someplace 
else.

Yann LeCun’s Response



Roger Grosse’s comments

Asking “why does Batch Norm help?” is like asking an organic chemist 
“what does Nitrogen do?”



What are the mysteries of deep learning?

(discussion)



Training Dynamics





Parameters Outputs

Training depth-2 ReLU on exp loss - Lénaïc Chizat



Optimization

min
!∈𝒞

𝐿 𝜃

*Images: Tom Goldstein lab



min
!∈𝒞

𝐿 𝜃 𝐿:ℝ! → ℝ

Access to 𝐿:

• Value oracle 𝐿:ℝ! → ℝ
• Gradient: ∇𝐿:ℝ! → ℝ!

• Hessian: ∇"𝐿:ℝ! → ℝ!!

• Restricted: Experts / Bandits / RL
Constraints:

• Explicit
• Implicit: membership or separation oracle
• Can replace with regularizer 𝜆 ⋅ 𝑏(𝜃)

Thm: If 𝐿 (strongly) convex and 𝒞
convex then following are 
equivalent:
• 𝜃 is global minimum
• 𝜃 is local minimum
• ∇L(𝜃) = 0!

Or 
estimators



Optimization in (self ) supervised learning
Distribution 𝑥 ∼ 𝑋, Loss 𝐿 𝜃 = 𝔼#∼%[𝐿# 𝜃 ]
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Iterative optimization algorithms

• 𝜃& = something
• 𝜃'() = 𝜃' + 𝛿 for 𝛿 ”small” and (on average) 𝐿 𝜃'() “smaller” than 𝐿(𝜃')

∇𝐿 𝜃 ⋅ 𝛿 ≤ 𝐿 𝜃 + 𝛿 − 𝐿 𝜃 ≈ ∇𝐿 𝜃 ⋅ 𝛿 +
1
2
𝛿*∇" 𝜃 𝛿



Linear Regression

“half of neural net phenomena can be explained by reasoning about linear 
networks” Roger Grosse



Move to whiteboard



Iterative optimization algorithms

• 𝜃& = something
• 𝜃'() = 𝜃' + 𝛿 for 𝛿 ”small” and (on average) 𝐿 𝜃'() “smaller” than 𝐿(𝜃')

∇𝐿 𝜃 ⋅ 𝛿 ≤ 𝐿 𝜃 + 𝛿 − 𝐿 𝜃 ≈ ∇𝐿 𝜃 ⋅ 𝛿 +
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Gradient Descent: 𝜃'() = 𝜃' − 𝜂 ⋅ 𝐼 ⋅ ∇𝐿(𝜃)

• 𝜃& = something
• 𝜃'() = 𝜃' + 𝛿 for 𝛿 ”small” and (on average) 𝐿 𝜃'() “smaller” than 𝐿(𝜃')

Trust Region: 𝜃'() = arg min
+ ,,," ./

𝐿(𝜃)

Proximal: 𝜃'() = argmin 𝐿 𝜃 + 𝜆 ⋅ 𝑑 𝜃, 𝜃'

𝜂 → 0 ⇔ 𝜆 → ∞

Projected GD: 𝜃'() = 𝑃𝑟𝑜𝑗 𝜃 𝑑 𝜃, 𝜃' ≤ 𝜂 𝜃 − ∇L(𝜃)



Optimization in (self ) supervised learning
Distribution 𝑥 ∼ 𝑋, Loss 𝐿 𝜃 = 𝔼#∼%[𝐿# 𝜃 ]
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Extra: Double Descent

Nakkiran, Kaplun, Bansal, Yang, Barak, Sutskever



Extra: Double Descent

𝑋"𝑋 =
𝜆# ⋯
⋮ ⋱ ⋮

⋯ 𝜆$

𝑑 < 𝑛 𝑑 ≈ 𝑛 𝑑 > 𝑛

Random 𝑋:



Extra: Double Descent



Layers

Zhang, Bengio, Singer 2019
Raghu, Gilmer, Yosinski, Sohl-Dickstein, 2017

similarity to final state

randomness just for symmetry breaking!


