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Coming up: Pset 2 = project proposal

Groups up to 3. Proposal will have three component: 
• Proposal
• Summary of a recent related paper(s) & why it doesn’t answer question
• Notebook with some toy examples

More details soon



Learning

𝐴

Data

𝑀 numbers

Model

𝑁 numbers

𝑁 equations in 𝑀 unknowns

Intuitively: If 𝑁 ≳ 𝑀 may be able to recover ≈all of the data

Even if 𝑁 ≪ 𝑀 can recover ≈ 𝑁 bits of the data

By Murphy’s law: 
the most 

sensitive ones



Learning
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𝑀 numbers

Model

𝑁 numbers

𝑁 equations in 𝑀 unknowns

Intuitively: If 𝑁 ≳ 𝑀 may be able to recover ≈all of the data

Even if 𝑁 ≪ 𝑀 can recover ≈ 𝑁 bits of the data

By Murphy’s law: 
the most 

sensitive ones

It’s even worse!
Auxiliary 

Information



What’s Memorization?

Recover training sample(s) 𝑥 ∈ 𝒳

Given 𝑥 find out whether or not 𝑥 ∈ 𝒳

Adversary Goal

𝐴
Data Model
𝒳

Adversary Access

Full description (i.e., weights) of model

𝑞 black box queries to model

Auxiliary information about 𝑥
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Inference attacks

𝐴

Can reconstruct 
model from queries

queries

Can reconstruct 
data from model

Data Model



Inference attacks

𝐴

Can reconstruct 
model from queries

queries

Can reconstruct 
data from model

Data Model

Solutions:
• Cryptographic: 100% privacy for model, but efficiency 

cost, and doesn’t help if release outputs. 
• Differential privacy: “X% privacy” but X vs utility 

tradeoff not great
• Heuristics: Hope for  100%, might get 0%



Fully Homomorphic Encryption (FHE)

𝑥! 𝑥 𝐴𝑁𝐷 𝑥′𝑥

𝑥! 𝑥 𝑂𝑅 𝑥′𝑥

𝑁𝑂𝑇(𝑥)𝑥



𝑥! 𝑥 𝑁𝐴𝑁𝐷 𝑥′𝑥

Fully Homomorphic Encryption (FHE)



FHE Secret key: 𝑘 ∼ {0,1}!

Encryption: randomized 𝐸: {0,1}!×{0,1} → {0,1}"

Decryption: 𝐷: {0,1}!×{0,1}" → {0,1}

Evaluation: randomized 𝑁𝐴𝑁𝐷: {0,1}"×{0,1}" → {0,1}"

* Can also consider public key variant

Does not get 
secret key!

Secret key
Plaintext
Ciphertext



FHE

Correctness: ∀#∀$∈{',)} , 𝐷# 𝐸# 𝑏 = 𝑏

Evaluation: ∀#∀$,$!∈{',)} , 𝑁𝐴𝑁𝐷 𝐸# 𝑏 , 𝐸# 𝑏+ ≡ 𝐸#(¬ 𝑏 ∧ 𝑏+ )

Computational
secrecy*:            ∀ alg 𝐴 of time ≪ exp(𝑛)

Pr
,∼{',)}

𝐴 𝐸# 𝑏 = 𝑏 ≤
1
2
+ exp(−𝑛)

Δ!" < exp(−𝑛)

Can’t distinguish between 
𝐸!(0) and 𝐸! 1

𝑘 ∼ {0,1}!

* Even if we get exp(𝑛) samples with same key

Secret key: 𝑘 ∼ {0,1}!

Encryption: randomized 𝐸: {0,1}!×{0,1} → {0,1}"

Decryption: 𝐷: {0,1}!×{0,1}" → {0,1}
Evaluation: randomized 𝑁𝐴𝑁𝐷: {0,1}"×{0,1}" → {0,1}"



FHE: What’s known
Gentry 2009: FHE exists under reasonable assumptions

…  FHE exists under standard assumptions

… implementations 



What is FHE good for?

𝐴Data ℎ

𝐸#(𝑥) Many 𝑁𝐴𝑁𝐷s 𝐸#(ℎ)

Challenges: Only get encrypted model/summary
Huge computational overhead
(Matrix vector mult on <1000 dimensions takes few secs on 32 core 250GB PC)
Halevi, Shoup 2018

Encryption: randomized 𝐸: {0,1}"×{0,1} → {0,1}#

Decryption: 𝐷: {0,1}"×{0,1}# → {0,1}
Evaluation: randomized 𝑁𝐴𝑁𝐷: {0,1}#×{0,1}# → {0,1}#Can also 

use MPC

https://eprint.iacr.org/2018/244


Differential Privacy

“You will not be affected, adversely or otherwise, by allowing 
your data to be used in [a DP protected] study or analysis, 
no matter what other studies, data sets, or information 
sources, are available.” 

Dwork and Roth



Differential Privacy



Differential Privacy

𝐴Data ℎ

𝒳 = { 𝑥), … , 𝑥= , … , 𝑥!}

Data belonging 
to 𝑖-th person

Def: 𝐴 is 𝜖 differentially private if
posterior probability of 𝑥= ∈ 𝒳 ∈ 𝑒±@× prior probability of 𝑥= ∈ 𝒳

∀𝒳,𝒳′ s.t. 𝒳 △𝒳+ = 1, ∀ℎ

Pr 𝐴 𝒳 = ℎ ∈ 𝑒±@ Pr[𝐴 𝒳+ = ℎ]

𝐴 must be 
randomized



Differential Privacy 𝐴Data ℎ

𝒳 = { 𝑥), … , 𝑥= , … , 𝑥!}

Def: 𝐴 is 𝜖 differentially private if
∀𝒳,𝒳′ s.t. 𝒳 △𝒳+ = 1, ∀ℎ

Pr 𝐴 𝒳 ∈ 𝑆 ∈ 𝑒±@ Pr[𝐴 𝒳+ ∈ 𝑆]

𝛿 ≪ 𝜖
Think 𝛿 = 0∀𝒳,𝒳′ s.t. 𝒳 △𝒳+ = 1, ∀𝑆

+ 𝛿

𝛿

Pr 𝐴 𝒳 = ℎ ∈ 𝑒±@ Pr[𝐴 𝒳+ = ℎ]



Differential Privacy 𝐴Data ℎ

𝒳 = { 𝑥), … , 𝑥= , … , 𝑥!}

Def: 𝐴 is 𝜖 differentially private if

Pr ≤ 𝑒! ⋅ Pr[ ]
Bad event 
happened to 𝑖
because their 
data in 𝒳

Bad event 
happens 
anyway

Example: 𝐴(𝒳) reveals short people more likely to default on loans

Pr 𝐴 𝒳 ∈ 𝑆 ∈ 𝑒±@ Pr[𝐴 𝒳+ ∈ 𝑆]

∀𝒳,𝒳′ s.t. 𝒳 △𝒳+ = 1, ∀𝑆



Differential Privacy 𝐴Data ℎ

𝒳 = { 𝑥), … , 𝑥= , … , 𝑥!}

Def: 𝐴 is 𝜖 differentially private if

Pr 𝐴 𝒳 ∈ 𝑆 ∈ 𝑒±@ Pr[𝐴 𝒳+ ∈ 𝑆]

∀𝒳,𝒳′ s.t. 𝒳 △𝒳+ = 1, ∀𝑆

Why not Pr[𝐴 𝒳 ∈ 𝑆 ] ∈ Pr 𝐴 𝒳+ ∈ 𝑆 ± 𝜖 ?

Think: 𝐴 𝒳 = {𝑥=" , … . , 𝑥=#} random 𝑖), … , 𝑖# , 𝑘 ≪ 𝑛

Pr 𝐴 𝒳 ∈ 𝑆 − Pr[𝐴 𝒳+ ∈ 𝑆] ≤
𝑘
𝑛

Subset 𝑖#. . 𝑖$
is “sacrificial 

lamb”



Differentially private statistics:
Publish estimates  V𝑓) ≈ ∑A∈𝒳 𝑓) 𝑥 ,… , V𝑓# ≈ ∑A∈𝒳 𝑓#(𝑥)

In differentially private way

Why can’t we just publish sums?

• 40 CS229br students passed pset zero
• 39 CS229br students passed pset zero & not named Costis



Differentially private statistics:

In differentially private way

Laplace mechanism: 

V𝑓= = \
A∈𝒳

𝑓=(𝑥) + Lap 𝑘/𝜖

Assume 𝑓= 𝑥 ∈ [0,1]

Pr Lap 𝑏 = 𝑥 =
1
2𝑏
exp(−|𝑥|/𝑏)

Symmetric 
exponential

𝜎N = 2𝑏N

THM: Laplace mechanism is 𝜖-DP

Publish estimates  V𝑓) ≈ ∑A∈𝒳 𝑓) 𝑥 ,… , V𝑓# ≈ ∑A∈𝒳 𝑓#(𝑥)



Laplace mechanism: 

Pr Lap 𝑏 = 𝑥 =
1
2𝑏
exp(−|𝑥|/𝑏)

𝜎$ = 2𝑏$THM: Laplace mechanism is 𝜖-DP

PF: Focus on single 𝑓

𝑓 𝒳 ≔ 6
%∈𝒳

𝑓(𝑥) 𝑓 𝒳′ ≔ 6
%∈𝒳(

𝑓(𝑥)

𝑓 𝒳 − 𝑓 𝒳( ≤ 1

V𝑓= = \
A∈𝒳

𝑓=(𝑥) + Lap 𝑘/𝜖

Assume 𝑓) 𝑥 ∈ [0,1]Publish estimates  V𝑓) ≈ ∑A∈𝒳 𝑓) 𝑥 ,… , V𝑓# ≈ ∑A∈𝒳 𝑓#(𝑥)

Proof on Board



Publish estimates  V𝑓) ≈ ∑A∈𝒳 𝑓) 𝑥 ,… , V𝑓# ≈ ∑A∼𝒳 𝑓#(𝑥)

Laplace mechanism: 

Pr Lap 𝑏 = 𝑥 =
1
2𝑏
exp(−|𝑥|/𝑏)

𝜎$ = 2𝑏$THM: Laplace mechanism is 𝜖-DP

V𝑓= = \
A∼P

𝑓=(𝑥) + Lap 𝑘/𝜖

Assume 𝑓) 𝑥 ∈ [0,1]

Generalization: Achieve 𝜖-DP for std ≈ 𝑘/𝜖 estimator for any 𝑓:𝒳 → ℝ"

s.t. 𝑓 𝒳 − 𝑓 𝒳+
) ≤ 𝑘 for all 𝒳 △𝒳+ = 1

Sensitivity of 𝑓



Generalization: Achieve 𝜖-DP for std ≈ 𝑘/𝜖 estimator for any 𝑓:𝒳 → ℝ"

s.t. 𝑓 𝒳 − 𝑓 𝒳+
) ≤ 𝑘 for all 𝒳 △𝒳+ = 1

Sensitivity of 𝑓

Gaussian mechanism: Output 𝑓 𝒳 + 𝑁(0, 𝜎N𝐼)

”Morally”:  Achieve 𝜖 -DP std ≈ 𝑘/𝜖 for any 𝑓:𝒳 → ℝ"

s.t. 𝑓 𝒳 − 𝑓 𝒳+
N ≤ 𝑘 for all 𝒳 △𝒳+ = 1

log(1/𝛿)𝛿



Important

Differential privacy is definition

Adding noise is one approach to achieve definition



Differential privacy under post-processing

Thm: If 𝐴 is 𝜖-DP and 𝐴′ is 𝜖′-DP then 𝐵 𝒳 = 𝐴 𝒳 , 𝐴′(𝒳 ) is 𝜖 + 𝜖(-DP

Proof: ∀ℎ, ℎ′ and 𝒳 △𝒳′ ≤ 1

Pr 𝐴 𝒳 , 𝐴+ 𝒳 = (ℎ, ℎ+) ≤ 𝑒@ Pr 𝐴 𝒳+ = ℎ ⋅ 𝑒@! Pr[𝐴+ 𝒳+ = ℎ′]

Differential privacy composition

Thm: If 𝐴 is 𝜖-DP and 𝐵 𝒳 = 𝑓(𝐴 𝒳 ) then 𝐵 𝒳 is 𝜖-DP

Proof: ∀ℎ and 𝒳 △𝒳′ ≤ 1
Pr 𝑓 𝐴 𝒳 = ℎ = W

%&∈(!" %

Pr[𝐴 𝒳 = ℎ&] ≤ 𝑒) W
%#∈(!" %

Pr 𝐴 𝒳′ = ℎ& = 𝑒) Pr[𝑓(𝐴 𝒳& ) = ℎ]



Advanced composition
Thm: If 𝐴)…A] are 𝜖-DP then 𝐵 𝒳 = 𝐴) 𝒳 ,… , 𝐴# 𝒳 is

1) 𝑘𝜖-DP

2) ( f𝑂(𝜖 𝑘), 𝑜 1 )-DP

More accurately: 𝑂 𝜖 𝑘 log(1/𝛿) + 𝜖!𝑘 , 𝛿

* Holds even if 𝐴=^) depends on outputs of 𝐴)…𝐴=_)

Proof on Board



DP-SGD

On Board



Evaluation



Protection from memorization in practice

Jayaraman and Evans 19



Private aggregation of teacher ensembles





Heuristics

Avoid DP issues:

• Accuracy hit
• Large values for 𝜖
• Slower



InstaHide
Recall FHE-based training:

𝐴𝑥#, … , 𝑥* ℎ

𝐸! 𝑥* …𝐸!(𝑥") Many 𝑁𝐴𝑁𝐷s 𝐸#(ℎ)

Challenges: Only get encrypted model/summary
Huge computational overhead



InstaHide

𝐴𝑥#, … , 𝑥* ℎ



InstaHide

𝐴𝑥#, … , 𝑥* ℎ



InstaHide

𝐴𝑥#, … , 𝑥* ℎ@𝑥#, … , @𝑥+"𝐸"

Public 
data

Hope: @𝑥#, … . , @𝑥+ “encrypt” the original data, but are still good enough to train on.

Can test 
empirically

Requires 
definition + proof

Intuition: Mixup* data augmentation

Require 𝑓 𝛼𝑥) + 𝛽𝑥N + 𝛾𝑥a ≈ (𝛼, 𝛽, 𝛾)

* Zhang, Cisse, Dauphin, Lopez-Paz ‘18



InstaHide

𝐴𝑥#, … , 𝑥* ℎ@𝑥#, … , @𝑥+"𝐸"

Public 
data

1) 𝑥+ = 𝜆)𝑥) + 𝜆N𝑥N + 𝜆a𝑥a + 𝜆b𝑥b

2) m𝑥 = (𝑥)+𝑘), ⋯ , 𝑥!+ 𝑘!)

for 𝑘 ∼ ±1 !

OTP 
inspired

𝑥 ∈ −1,+1 !



Attack on InstaHide



Attack description

Obs 1: 𝑥)…𝑥* ↦ (𝑘)𝑥), … , 𝑘*𝑥*) for 𝑘 ∈ ±1 * allows to recover ( 𝑥) , … , 𝑥* )

𝑥) = R/G/B value of pixel, normalized to [−1,+1]

1) 𝑥( = 𝜆#𝑥# + 𝜆,𝑥, + 𝜆-𝑥- + 𝜆.𝑥.

2) @𝑥 = (𝑥#(𝑘#, ⋯ , 𝑥*( 𝑘*)

for 𝑘 ∼ ±1 *

Original 
image

Sign
Flipped

Absolute 
value



Attack description 𝑥) = R/G/B value of pixel, normalized to [−1,+1]

1) 𝑥( = 𝜆#𝑥# + 𝜆,𝑥, + 𝜆-𝑥- + 𝜆.𝑥.

2) @𝑥 = ( 𝑥#( , … , 𝑥*( )

≈ Ω(1) agreement

All came from same 
original private image

Average ≈
Train similarity 

function



Attack description 𝑥) = R/G/B value of pixel, normalized to [−1,+1]

1) 𝑥( = 𝜆#𝑥# + 𝜆,𝑥, + 𝜆-𝑥- + 𝜆.𝑥.

2) @𝑥 = ( 𝑥#( , … , 𝑥*( )

All came from same 
original private image

𝜆#

𝜆,pr
iv

at
e

encoded
Reconstruct encoding graph

@𝑥 = 𝑎𝑏𝑠(𝜆#𝑥) + 𝜆,𝑥/ + 𝑛𝑜𝑖𝑠𝑒)



Attack description 𝑥) = R/G/B value of pixel, normalized to [−1,+1]

1) 𝑥( = 𝜆#𝑥# + 𝜆,𝑥, + 𝜆-𝑥- + 𝜆.𝑥.

2) @𝑥 = ( 𝑥#( , … , 𝑥*( )

𝜆#

𝜆,pr
iv

at
e

encoded

@𝑥 = 𝑎𝑏𝑠(𝜆#𝑥) + 𝜆,𝑥/ + 𝑛𝑜𝑖𝑠𝑒)

InstaHide challenge:
100 private images
5000 encoded images
5000𝑛 non-linear eq in 100𝑛 vars

Use GD to find argmin abs 𝐴𝑋 − f𝑋 N

𝑋 ∈ −1,1 "×,

𝐴 : Adj 
matrix



Black Box recovery


