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Coming up: Pset 2 = project proposal

Groups up to 3. Proposal will have three component:
* Proposal
« Summary of a recent related paper(s) & why it doesn’'t answer question

* Notebook with some toy examples

More details soon



Learning

\

Data Model

M numbers E> & E>

N numbers

-

By Murphy’s law:
the most
sensitive ones

N equations in M unknowns

Intuitively: If N = M may be able to recover ~all of the data

Even if N « M can recover =~ N bits of the data



Learning

Data &
M numbers E> 4 E>

Auxiliary

Information It's even worse!

Model

N numbers

-

By Murphy's law:
the most
sensitive ones

N equations in M unknowns

Intuitively: If N = M may be able to recover ~all of the data

Even if N « M can recover =~ N bits of the data



What's Memorization? >

Adversary Goal
 Recover training sample(s) x € X

Given x find out whether or not x € X

—

Adversary Access

Auxiliary information about x

1 Full description (i.e., weights) of model

q black box queries to model

Model
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— CHAPTER ONE —

The Boy Who Lived

Mr and Mrs Dursley, of number four, Privet Drive, were proud to
say that they were perfectly normal, thank you very much. They
were the last people you'd expect to be involved in anything
strange or mysterious, because they just didn’t hold with such
nonsense.

Mr Dursley was the director of a firm called Grunnings, which
made drills. He was a big, beefy man with hardly any neck,
although he did have a very large moustache. Mrs Dursley was
thin and blonde and had nearly twice the usual amount of neck,
which came in very useful as she spent so much of her time craning
over garden fences, spying on the neighbours. The Dursleys had a
small son called Dudley and in their opinion there was no finer
boy anywhere.

The Dursleys had everything they wanted, but they also had a
secret, and their greatest fear was that somebody would discover
it. They didn’t think they could bear it if anyone found out about
the Potters. Mrs Potter was Mrs Dursley’s sister, but they hadn’t
met for several years; in fact, Mrs Dursley pretended she didn’t
have a sister, because her sister and her good-for-nothing husband
were as unDursleyish as it was possible to be. The Dursleys
shuddered to think what the neighbours would say if the Potters
arrived in the street. The Dursleys knew that the Potters had a

Playground

Load a preset... Save

Mr and Mrs Dursley, of number four, Privet Drive, were proud to say that they were perfectly ¢
normal, thank you very much. They were the last people you'd expect to be involved in
anything strange or mysterious, because they just didn't hold with such nonsense.

Mr. Dursley was the director of a firm called Grunnings, which made drills. He was a big, beefy
man with hardly any neck, although he did have a very large mustache. Mrs. Dursley was thin
and blonde and had nearly twice the usual amount of neck, which came in very useful as she
spent so much of her time craning over garden fences, spying on the neighbors. The Dursleys
had a small son called Dudley and in their opinion there was no finer boy anywhere.

The Dursleys had everything they wanted, but they also had a secret, and their greatest fear
was that somebody would discover it. They didn't think they could bear it if anyone found out
about the Potters. Mrs. Potter was Mrs. Dursley's sister, but they hadn't met for several years;
in fact, Mrs. Dursley pretended she didn't have a sister, because her sister and her good-for-
nothing husband were as unDursleyish as it was possible to be. The Dursleys shuddered to
think what the neighbors would

View code Share

Mode

Model

text-davinci-003

Temperature 0.7

Maximum length 256

Stop sequences
Enter sequence and press Tab

Top P 1



Simple Demographics Often Identify People Uniquely

Latanya Sweeney
Carnegie Mellon University
latanya@andrew.cmu.edu

2000

Name

Address

Ethnicity
Visit date

Diagnosis Dat.e
registered
Procedure
Party

1997

affiliation

Total charge

Date last
voted
Voter List

Medical Data

User Secret Type Exposure Extracted?

Robust De-anonymization of Large Sparse Datasets

Arvind Narayanan and Vitaly Shmatikov

The University of Texas at Austin

2008

Figure 1: An image recovered using a new model in-
version attack (left) and a training set image of the
victim (right). The attacker is given only the per-
son’s name and access to a facial recognition system
that returns a class confidence score.

Fredrikson, Jha, Ristenpart 2015

Generated Image

Training Set

Prefix
East Stroudsburg Stroudsburg... ]

A CCN 52 v
B SSN 13 v
SSN 16
C SSN 10 GPT-2
SSN 22
SSN 32 v :
Memorized text | Y
N 3
F et : Corporation Seabank Centre
CCN 36 Marine Parade Southport
G CCN 29 —_—
CCN 48 v :
Table 2: Summary of results on the Enron email dataset. Three \

Prompt:
Ann Graham Lotz

Caption: Living in the light
with Ann Graham Lotz

secrets are extractable in < | hour; all are heavily memorized.

Carlini et al (2019,2020,2023)



Nicholas Carlini!-2

The Secret Sharer: Evaluating and Testing

2019

Unintended Memorization in Neural Networks

Chang Liu?

Ulfar Erlingsson’

Jernej Kos?

Dawn Song?

Exposure

0 5 10 15
Number of Insertions
Figure 6: Exposure of a canary inserted in a Neural Machine

Translation model. When the canary is inserted four times or
more, it is fully memorized.
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Figure 7: Exposure as a function of training time. The expo-
sure spikes after the first mini-batch of each epoch (which
contains the artificially inserted canary), and then falls overall

Memorization Without Overfitting: Analyzing the
Training Dynamics of Large Language Models

2022

Kushal Tirumala* Aram H. Markosyan* Luke Zettlemoyer =~ Armen Aghajanyan
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Figure 1: We show T'(N, 7), which is the number of times a language model needs to see each

training example before memorizing 7 fraction of the training data, as a function of model size V.

Result are for causal language modeling on WIKITEXT103, right plot is on log-log scale. Note that
generally larger models memorize faster, regardless of 7.

during the mini-batches that do not contain it.
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Figure 3: We show Ty pdate (N, 7), which is the number of gradient descent updates U a language
model needs to perform before memorizing 7 fraction of the data given on the U’th update, as a
function of model size N. Result are for causal (Left) and masked (Right) language modeling on the
ROBERTA dataset, on a log-log scale. We show that larger models memorize faster, regardless of 7.



Inference attacks

T~ queries

=y |:>Mode|=
< i —

Can reconstruct Can reconstruct
data from model model from queries




Inference attacks

\ qgueries
. |:> A |:> Model

Solutlons m

« Cryptographic: 100% privacy for model, but efficiency
cost, and doesn't help if release outputs.

 Differential privacy: “X% privacy” but X vs utility
tradeoff not great

€S

« Heuristics: Hope for 100%, might get 0%




Fully Homomorphic Encryption (FHE)

I\/l\/
I\/




Fully Homomorphic Encryption (FHE)




FHE Secret key: k ~ {0,1}" Secret key
Plaintext

Encryption: randomized E: {0,1}*x{0,1} — {0,1}™ Ciphertext

Decryption: D: {0,1}"*x{0,1}'* — {0,1}

Does not get
secret key!

Evaluation: randomized NAND: {0,1}"x{0,1}"™ — {0,1}'"

* Can also consider public key variant



FHE  Secret key: k ~ {0,1}"
Encryption: randomized E: {0,1}"x{0,1} — {0,1}™

Decryption: D: {0,1}"*x{0,1}'* — {0,1}
Evaluation: randomized NAND: {0,1}"x{0,1}"™ — {0,1}'"

Correctness: VVyeg0,13 Dk (Ex (b)) = b '/>ATV< exp(—n) D

Evaluation: VV}, ,rcco 1y » NAND (Ej (D), Ex (b")) = Ex(=(b A D))

Computatlonal . Can't distinguish between
secrecy*: vV alg A of time «< exp(n) E,(0) and E;(1)

1
b~I{)§1}[A(Ek(b)) =bh| < > + exp(—n)

k ~ {0,1}"
* Even if we get exp(n) samples with same key




FHE: What's known

Gentry 2009: FHE exists under reasonable assumptions

... FHE exists under standard assumptions

... Implementations

HElib

HElib is an open-source (Apache License v2.0) software library that implements homomorphic encryption (HE).
Currently available schemes are the implementations of the Brakerski-Gentry-Vaikuntanathan (BGV) scheme with
bootstrapping and the Approximate Number scheme of Cheon-Kim-Kim-Song (CKKS), along with many
optimizations to make homomorphic evaluation run faster, focusing mostly on effective use of the Smart-
Vercauteren ciphertext packing techniques and the Gentry-Halevi-Smart optimizations. See this report for a
description of a few of the algorithms using in this library.

Please refer to CKKS-security.md for the latest discussion on the security of the CKKS scheme implementation in
HElib.

Since mid-2018 HElib has been under extensive refactoring for Reliability, Robustness & Serviceability,
Performance, and most importantly Usability for researchers and developers working on HE and its uses.

HElib supports an “assembly language for HE", providing low-level routines (set, add, multiply, shift, etc.),
sophisticated automatic noise management, improved BGV bootstrapping, multi-threading, and also support for
Ptxt (plaintext) objects which mimics the functionality of Ctxt (ciphertext) objects. The report Design and
implementation of HElib contains additional details. Also, see CHANGES.md for more information on the HElib
releases.

Community Growth:

OpenFHE is an open-source project that provides
efficient extensible implementations of the leading
post-quantum Fully Homomorphic Encryption (FHE) schemes.

Microsoft SEAL

Microsoft SEAL is an easy-to-use open-source (MIT licensed) homomorphic encryption library developed by the
Cryptography and Privacy Research Group at Microsoft. Microsoft SEAL is written in modern standard C++ and
is easy to compile and run in many different environments. For more information about the Microsoft SEAL
project, see sealcrypto.org.



Encryption: randomized E: {0,1}"x{0,1} — {0,1}™

What ISﬂﬂE gOOd for? Decryption: D: {0,1)"x{0,1}™ — {0,1}

Can also Evaluation: randomized NAND: {0,1}™x{0,1}™ - {0,1}™

use MPC
> |

Data |:>

E,, (x) |:> Many NANDs |:> E,(h)

Challenges: Only get encrypted model/summary
Huge computational overhead

(Matrix vector mult on <1000 dimensions takes few secs on 32 core 250GB PC)
Halevi, Shoup 2018



https://eprint.iacr.org/2018/244

Ditferential Privacy

Model

"You will not be affected, adversely or otherwise, by allowing
your data to be used (n [a DP protected|] study or analysis,
no matter what other studies, data sets, or information

sources, are avalilable!
Dwork and Roth



Ditferential Privacy

""" = [rustworthy ML Home = Symposium  Thursday Series Recordings Resources

TRUSTWORTHY ML
INITIATIVE

Opportunitiesv Community ~

2 OpenDP  wour:

Developing Open Source
‘Tools for Differential Privacy

OpenDP is a community effort to build trustworthy, open-source software
tools for statistical analysis of sensitive private data. These tools, which
we call OpenDP, will offer the rigorous protections of differential privacy
for the individuals who may be represented in confidential data and
statistically valid methods of analysis for researchers who study the data.

Machine Learning with Differential Priv
in TensorFlow

SECURITY B86.13.2816 87:82 PM

Apple’s ‘Differential Privacy’ Is About Collecting Your
Data---But Not YourData

At WWDC, Apple name-checked the statistical science of learning as much as possible about a group while learning as
little as possible about any individual in it.

New differential privacy platform co-
developed with Harvard’s OpenDP unlocks
data while safequarding privacy

Jun 24, 2020 | John Kahan - VP, Chief Data Analytics Officer

Opacus
Google releases

differential
privacy tools to
commemorate

Train PyTorch models with Differential Privacy

Data Privacy Day



Ditferential Privacy

Data |:> A |:> h

= { X1, .- ) Xn}

ata belonglng
to i-th person

Def: A is € differentially private if

posterior probability of x; € X € e*¢x prior probability of x; € X

, . A must be
VX,X S.t. |X AX'| = 1, Vh AandomizeD

Pr[A(X) = h] € e*¢ Pr[A(X") = h]




Ditferential Privacy

Data

=

5 X ={Xq, ..., Xj, e, X }

v
Def: A is € differentially private if

VX, X'st. [ X AX'| =1, VR

=

0 K

€
Think 6 =0

Pr[A(X) € $]] € e PrA(X") &S]+ &



Ditferential Privacy[ ... =S4 I

X ={Xq, ..., Xj, e, X }

Def: A is € differentially private if
VX, X' 'st. [ X AX'|=1,VS
Pr[A(X) € S] € eX¢ Pr[A(X') € S]

Bad event
Bad event

happenedtoi | - €
Pl‘[ because their ] = € PI‘[ happens ]
anyway

data in X

Example: A(X) reveals short people more likely to default on loans



Differential Privacy| e |,:> ., |,:>| ) |

X ={X1, 0, Xj) ey X }

Def: A is € differentially private if
VX, X st. | X AX'|=1,VS
Pr[A(X) € S] € eX¢ Pr[A(X") € S]

—_—

Why not Pr[A(X) e S] e Prl[A(X') eS|+ €?
Subset iy.. 05
Is “sacrificial
lamb”

Think: A(X) = {x;, ..., x; } random iy, ..., i , k K n

PrLA(X) € 51— PrlA(X") € §]| < %



Ditferentially private statistics:

Publish estimates f; = Y. cr 1(X) ) oo, fe = Yrer fre (%)

In differentially private way

Why can’t we just publish sums?

* 40 CS229br students passed pset zero
» 39 CS229br students passed pset zero & not named Costis



Ditferentially private statistics:

Publish estimates fi = Y. cr i(X) ;o) fre = Ser fu(X) .

In differentially private way

Laplace mechanism: Assume f;(x) € [0,1]
fi= ) fi(x) +Lap(k/e)
XEX Symmetn
e ~\ gponentlal
THM: Laplace mechanism is e-DP Pr[Lap(b) = x] = %exp( x| /b)
§ J

= 2b*



Publish estimates f; = Y. cv f1(X) , oo, fre = Yer fre (%)

Laplace mechanism:

fi= ) fix) +Lap(k/e)

XeEX 1
Pr[Lap(b) = x] = o5, €xp(=|x|/b)
[ THM: Laplace mechanism is e-DP ] 52 = 9p2

PF: Focus on single f IF(0) — F(XD| <1

"""
FOO =) f)  FO =) f@0)

XEX XEXT

‘ Proof on Board




Publish estimates f; = Y.cr 1(X) , oo, fre = Sy fie ()

Laplace mechanism:

fi= ) fi(x)+Lap(k/e)

x~X 1
Pr[Lap(b) = x] = o5, €xp(=|x|/b)
[ THM: Laplace mechanism is e-DP ] 52 = 9p2

Generalization: Achieve e-DP for std = k /e estimator for any f: X’ - R™

st. | f(X)—f(XD|  <kforall | X AX'| =1

\ )
|

Sensitivity of f



Generalization: Achieve e-DP for std = k /e estimator forany f: X — R™

st.|f(X)—f(X)|  <kforall | X AX'| =1

— i

Sensitivity of f

Gaussian mechanism: Output f(X) + N(0,02])

5 J/log(1/8)
"Morally”: Achieve e\/DP std ~\/k/e forany f: X — R™

s.t. ||f(X) — (XD, <k forall | X AX'| =1



Important

Differential privacy is definition

Adding noise is one approach to achieve definition



Differential privacy composition

[Thm: If Aise-DP and A" is €'-DP then B(X) = A(X),A"(X )ise+ €'-DP ]

Proof: Vh,h' and |[ X A X'| < 1

PrlA(X), A'(X) = (b, k)] < e Pr[A(X") = h] - e€ Pr[A(X') = h'] B

Ditferential privacy under post-processing

[ Thm: If A is e-

DP and B(X) = f(A(X)) then B(X) is e-DP J

Proof: Yh and

Pr[f(4(X)) = h] = Z Pr[A(X) = h'] < e Z Pria(x) = W] = e<Prifaccy) =1 [

XAX'|<1

href~1(h) h'ef=1(h)



Advanced composition

Thm: If A, ...Ay are e-DP then B(X) = A;(X), ..., A4, (X) is

1) ke-DP
2) (0(eVk),0(1))-DP

More accurately: 0 (e /klog(1/68) + €2k), 6

Proof on Board

* Holds even if A;,; depends on outputs of 4; ... 4;_;




DP-SGD

Deep Learning with Differential Privacy
October 25, 2016

Martin Abadi* Andy Chu- lan Goodfellow!
H. Brendan McMahan* llya Mironov- Kunal Talwar-
Li Zhang*

On Board




Fvaluation

DIFFERENTIALLY PRIVATE LEARNING NEEDS BETTER

FEATURES (OR MUCH MORE DATA)

Florian Tramér Dan Boneh

Stanford University Stanford University
tramerfics.stanford.edu daboldics.stanford.edu
ABSTRACT

We demonstrate that differentially private machine learning has not yet reached
its “AlexNet moment™ on many canonical vision tasks: linear models trained on
handcrafted features significantly outperform end-to-end deep neural networks for

moderate privacy budgets. To exceed the performance of handcrafted features,

we show that private learning requires either much more private data, or access
to features learned on public data from a similar domain. Our work introduces
simple yet strong baselines for differentially private learning that can inform the
evaluation of future progress in this area.

Data e-DP  Source CNN
1.2 Feldman & Zrnic (2020) 96.6

2.0 Abadi et al. (2016) 95.0

2.32  Buetal. (2019) 96.6

MNIST 2.5 Chen & Lee (2020) 90.0
293  Papernot et al. (2020a) 98.1

3.2 Nasr et al. (2020) 96.1

6.78  Yuetal. (2019b) 93.2

: 2.7 Papernot et al. (2020a) 86.1
Fashion-MNIST 3 (Chen & Lee (2020) 82.3
3.0 Nasr et al. (2020) 995.0

6.78  Yuetal. (2019b) 44.3

CIFAR-10 7.53  Papemotetal. (2020a)  66.2
8.0 Chen & Lee (2020) 93.0




Protection from memorization in practice

The Secret Sharer: Evaluating and Testing
Unintended Memorization in Neural Networks

Nicholas Carlini'-? Chang Liu? Ulfar Erlingsson' Jernej Kos® Dawn Song?

Test Estimated Extraction
Optimizer € Loss Exposure  Possible?

RMSProp 0.65 1.69 1.1

RM S PI' Op l . 2 l l . 5 9 2 . 3 Naive Composition Advanced Composition zCDP RDP
€ Loss 1% 2% 5% Loss 1% 2% 5% Loss 1% 2% 5% Loss 1% 2% 5%
A RMSPro .20 1.41 1.8 001 .94 (; 8 0 ; 94 (: 8 0 ; 93 (; ; 0 : 94 (; (.; 8
Q 0.05 .94 0 0 0 93 0 0 0 94 0 0 0 94 0 0 0
= RMSPI’OP 89 1.34 p. 5 01 9 0 0 0 9B 0 0 0 9% 0 0 0 9 0 0 0
H gy 8 0.5 95 0 0 0 93 0 0 0 94 0 0 0 92 0 0 0
3 RMSPI’OP 2x 1D 1.32 22 10 9% 0 0 0 9 0 0 0 92 0 0 o0 9% 0 0 0
() 5.0 94 0 0 0 94 0 0 0 94 0 0 0 .65 11 24 79
RMSPI‘OP 1 x 10 1.26 2.8 100 9 0 0 0 9B 0 0 0 91 o0 o0 2 53 9 33 108
S G D 0o 2 l l 3 6 50.0 .94 0 0 0 94 0 0 0 .64 2 12 65 .35 28 65 185
e v 100.0 91 0 0 0 93 0 0 0 52 13 31 98 32 21 67 205
500.0 .54 3 21 58 .79 4 7 31 28 8 41 210 27 5 54 278
Q_‘ 1,000.0 .36 20 48 131 71 8 16 74 22 12 42 211 24 10 37 269
D SG D N/ A l . 86 9 . 5 Table 7: Number of members (out of 10,000) exposed by Yeom et al. membership inference attack on neural network (CIFAR-100).
2 RM S Pr Op N / A l l 7 3 l O \/ The non-private (€ = co) model leaks 0, 556 and 7349 members for 1%, 2% and 5% FPR respectively.
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Private aggregation of teacher ensembles

SEMI-SUPERVISED KNOWLEDGE TRANSFER
FOR DEEP LEARNING FROM PRIVATE TRAINING DATA

Nicolas Papernot* Martin Abadi Ulfar Erlingsson
Pennsylvania State University Google Brain Google
ngp5056@cse.psu.edu abadi@google.com ulfar@google.com

Dataset | ¢ | ¢ | Queries | Non-Private Baseline | Student Accuracy

MNIST | 2.04 | 10° 100 99.18% 98.00%

MNIST | 8.03 | 10° 1000 99.18% 98.10%

SVHN | 5.04 | 1076 500 92.80% 82.72%

SVHN | 8.19 | 10°° 1000 92.80% 90.66%

Figure 4: Utility and privacy of the semi-supervised students: each row is a variant of the stu-
dent model trained with generative adversarial networks in a semi-supervised way, with a different
number of label queries made to the teachers through the noisy aggregation mechanism. The last
column reports the accuracy of the student and the second and third column the bound ¢ and failure

‘4 Datal probability § of the (£, §) differential privacy guarantee.
¥ /'{ Data2 —| Teacher2 ]\;\ I
Sensitive 4 Aggregate o .
Data é ‘> Dpata3 | Teachers Y, Teacher I I " " Queries
.\ ﬁdl : /7 l
Predicte _ Incomplete
‘1 Datan —#>  Teachern completion %~ public Data
| == Training s P> Prediction = + = - P Data feeding |

Figure 2: Overview of the approach: (1) an ensemble of teachers is trained on disjoint subsets of the
sensitive data, (2) a student model is trained on public data labeled using the ensemble.



SCALABLE PRIVATE LEARNING WITH PATE

Nicolas Papernot*
Pennsylvania State University
ngp5056@cse.psu.edu

Shuang Song*
University of California San Diego
shs@37@eng.ucsd.edu

Ilya Mironov, Ananth Raghunathan, Kunal Talwar & Ulfar Erlingsson
Google Brain
{mironov, pseudorandom, kunal,ulfar}@google.com

Queries Privacy Accuracy
Dataset | Aggregator answered | bound £ | Student | Baseline

LNMax (Papernot et al., 2017) 100 2.04 98.0%

MNIST | LNMax (Papernot et al., 2017) 1,000 8.03 98.1% 99.2%
Confident-GNMax (7=200, o1=150, 62=40) 286 1.97 98.5%
LNMax (Papernot et al., 2017) 500 5.04 82.7%

SVHN | LNMax (Papernot et al., 2017) 1,000 8.19 90.7% 92.8%
Confident-GNMax (7=300, 1=200, 62=40) 3,098 4.96 91.6%
LNMax (Papernot et al., 2017) 500 2.66 83.0%

Adult 85.0%

" [Confident-GNMax (T=300, 01 =200, 03-40) 524 190 | 83.7% ’
[LNMax 4,000 4.3 72.4%

Glyph | Confident-GNMax (7=1000, ¢1=500, 02=100) 10,762 2.03 75.5% 82.2%
Interactive-GNMax, two rounds 4,341 0.837 73.2%




Heuristics

Avoid DP issues:
* Accuracy hit
* Large values for ¢

 Slower



\ . \ InstaHide: Instance-hiding Schemes for Private Distributed

Learning*

NSta
Recall FHE-based training:

S .
xl, ey xn } %\/_D”n

Yangsibo Huang! Zhao Song? Kai Li® Sanjeev Aroral

F B | S | Many NANDs > | B

Challenges: Only get encrypted model/summary
Huge computational overhead
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InstaHide | Public

X1, s Xy |:> "E" |:> %1, o) By |:> y |:> h

Requires > Can te
definition + proof g
mplrlcal

Hope: %4, ..., %, "encrypt” the original data, but are still good enough to train on.

Intuition: Mixup* data augmentation

Require f(ax; + Bx, + yx3) = (a, B, 7)

[1.0, 0.0] [0.0, 1.0]
cat dog cat dog

* Zhang, Cisse, Dauphin, Lopez-Paz ‘18



‘ n Sta |_| id e Public MNIST CIFAR-10 CIFAR-100 ImageNet

data Vanilla training 99.5+0.1 948+0.1 77.9+0.2 77.4
G DPSGD* 98.1 72.0 N/A N/A
InstalHide;nide k-4 in inforence 98- 2+0.2 91.44-(0.2 73.24+0.2 72.6
InstaHide;,side k-1 98.24+03 91.24+0.2 73.1 £ 0.3 1.4
o InstaHide ross k=4. in inference 98.1 £0.2 90.3 £+ 0.2 728 +0.3 -
) InstaHide, s k-4 97.840.2 90.7+£0.2 73.2+0.2 .
ImtaHide(‘rlm:,kzﬁ_ in inference 97.4 = = ().2 89.(; _-‘: ().:‘ 72.1 i ().2 -
InstaHide . s j—¢ 97.3+0.1 89.8+0.3 71.94+ 0.3 -
e -' z
A X t_ +,x 8 +/l; + A, X
] = n
Z F g . x € [-1,+1]
(0,1,0,0) (0,0,0,1) (0, 44, 0, 43)
Bird Airplane 3 Bird Airplane
Y Y
Private train set Public dataset 1. Public — off-the-shelf
(large, e.g. ImageNet) 2. Large — gives more security

1) x" = Axt + A,x2% + 2323 + A,x*
2) X = (x1kq, -+, Xn k) OTP
iInspired
for k ~ {£1}"




Attack on InstaHide

An Attack on InstaHide:
Is Private Learning Possible with Instance Encoding?

Nicholas Carlini Samuel Deng Sanjam Garg
ncarlini@google.com sd3013@columbia.edu sanjamg@berkeley.edu
Somesh Jha Saeed Mabhloujifar Mohammad Mahmoody
jha@cs.wisc.edu sfar@princeton.edu mohammad@virginia.edu
Shuang Song Abhradeep Thakurta Florian Tramér
shuangsong@google.com athakurta@google.com tramer@cs.stanford.edu

Figure 1: Our solution to the InstaHide Challenge. Given 5.000 InstaHide encoded images released
by the authors, under the strongest settings of InstaHide, we recover a visually recognizable version
of the original (private) images in under an hour on a single machine.



AttaCk deSCH pt|On x; = R/G/B value of pixel, normalized to [—1, +1]

1) x' = Alxl + /12x2 + /13X3 + ).43(:4

TR
2) % = (x1kq, -, xpkn)

(0, 1 0 0) (0,0,0,1) (0, 24, 0, 23)
Alr rplane % p Bird Airplane
Y-
f k _I_ 1 n anate train set Public dataset 1. Public — off-the-shelf
O r ~ L (large, e.g. ImageNet) 2. Large — gives more security

Obs 1: x; ... x,, = (kyxq, ..., knx,,) for k € {£1}"* allows to recover (|x], ..., [x,])

Original Sign | Absolute
Image Flipped value



AttaCk deSCﬂ pt|or‘] x; = R/G/B value of pixel, normalized to [—1, +1]
1 x" = Axt + 2,02 + A3x3 + Ax? -

(0, 11, 0, 12)

(0,0,0,1)

Airplane 7 Bird Airplane
Y’ Y
Private train set Public dataset 1. Public — off-the-shelf
(large, e.g. ImageNet) 2. Large — gives more security

Average =~

All came from same
original private image



AttaCk deSCH pt|On x; = R/G/B value of pixel, normalized to [—1, +1]

1) x, — Alxl + /12x2 —+ /13x3 ~+ ).4.9(:4

.1X '. ' + Zx B T L+ A3 X : - + “x .v‘._" -
~ I| | / |) J_(
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Bird Airplane g |G 2 Bird Airplane
B g Y
Private train set Public dataset 1. Public — off-the-shelf
(large, e.g. ImageNet) 2. Large — gives more security

All came from same

original private image X = abs(A1x; + A,xj + noise)
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2)  Figure 1: Our solution to the InstaHide Challenge. Given 5.000 InstaHide encoded images released
by the authors, under the strongest settings of InstaHide, we recover a visually recognizable version
of the original (private) images in under an hour on a single machine.

matri>2
O

InstaHide challenge:
100 private images
5000 encoded images

5000n non-linear eq in 100n vars

Use GD to find arg minl||abs(4X) — X||’

. nxt
X = abs(A1x; + A,x; + noise) X € [=11]



Black Box recovery

Cryptanalytic Extraction of
Neural Network Models

Nicholas Carlini' Matthew Jagielski® Ilya Mironov®

Architecture Parameters Approach Queries (2.1077) (£.0) max|# —(}|
784-32-1 25,120 [JCB*20] . N " s gl
()IU’S 21‘).2 2 28.8 2 27.4 2 30.2
784-128-1 100,480 [JCB*20] g ge» 28" -
()urb' 221 i 2 26.4 2 24.7 2 29.4
10-10-10-1 210 [RK20] s ¢ Tnsicalll s .
()lll’b’ r)l(ill 9 42.7 9 37.98 9 36
10-20-20-1 420 [RK20] e 0 ool !
(’)um 217.1 2 4.6 2 38.7 2 a7
40-20-10-10-1 1,110 Ours ;e s s e o i
80-40-20-1 4,020 Ours -y ¢ raead il s IR

Table 1. Efficacy of our extraction attack which is orders of magnitude more precise
than prior work and for deeper neural networks orders of magnitude more query effi-
cient. Models denoted a-b-¢ are fully connected neural networks with input dimension
a, one hidden layer with b neurons, and ¢ outputs; for formal definitions see Section 2.
Entries denoted with a § were unable to recover the network after ten attempts.



