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What is learning?

Parameterized /
Adaptable system

Traditionally:

Environment

Loss: Well specified L(8) can compute estimator L(6)

Supervised learning: L(68) = E[£(fy(x), y)]

Reinforcement learning: L(6) = —IE[ {ior(si)]
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Representation: Is there 8 with small L(6)?

Optimization: Can we find such 6?

\ Generalization: Can we guarantee connection of L(8) vs E(B)?j
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The species can be divided into four genetically distinct populations, one widespread population, and three ¢ -] et
which have diverged due to small effective population sizes, possibly due to adaptation to the local

environment . The first of these is the population of lobsters from northern Norway, which is characterized by a

lower growth rate and a longer intermoult period than the other populations. The second is the population of

lobsters from the Faroe Islands, which is characterized by a higher growth rate than the other populations. The

third is the population of lobsters from the south coast of Norway, which is characterized by a unique shell

coloration and a lower growth rate than the other populations. Finally, the fourth is the population of lobsters

from the Baltic Sea, which is characterized by a greater body size and a higher growth rate than the other

populations|

Distribution |[edit)

Tysfjorden, along with neighbouring &~
fjords in Northern Norway, is home to
the world's northernmost populations of
H. gammarus.

Channel.['2l13]

Homarus gammarus is found across the north-eastern Atlantic Ocean from northern
Norway to the Azores and Morocco, not including the Baltic Sea. It is also present in most
of the Mediterranean Sea, only missing from the section east of Crete, and along only the
south-west coast of the Black Sea.?! The northernmost populations are found in the
Norwegian fiords Tysfjorden and Nordfolda, inside the Arctic Circle.['"]

The species can be divided into four genetically distinct populations, one widespread
population, and three which have diverged due to small effective population sizes,
possibly due to adaptation to the local environment.''?! The first of these is the population
of lobsters from northern Norway, which have been referred to as the "midnight-sun
lobster"."" The populations in the Mediterranean Sea are distinct from those in the
Atlantic Ocean. The last distinct population is found in part of the Netherlands: samples
from the Oosterschelde were distinct from those collected in the North Sea or English
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Example: ChatGPT

("Basic schoo Ing": Next-Token Prediction
Input: Random text (x4, ..., x,,) from Internet

Output: (Prob distribution over) token x
L Loss: —E[log Pr[X = x,,+1]]]
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Example: ChatGPT

(“Basic schoo Ing": Next-Token Prediction

Input: Random text (x4, ..., x,,) from Internet
Output: (Prob distribution over) token x

_ Loss: —E[logPr[£ = xn44]]] y
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Example: ChatGPT

(“Basic schoo Ing": Next-Token Prediction

Input: Random text (x4, ..., x,,) from Internet
Output: (Prob distribution over) token x

_ Loss: —E[log Pr[x = x,,41]]]

mBootcamp”: Instruct Tuning
Input: Random human-produced prompt

Output: Response

Here’s a messdfe to me:

\ Loss: (learned version of) human rating

{email}

Here are some bullet points for a reply:

{message}

Write a detailed reply



This course

» Taste of research results, questions, experiments, and more
» Goal: Get to state of art research: Attention Is All You Need

* Most lectures include paper from last 2 years

+  Though some also "wisdom of the ancients” _ L D
. Very experimental “rough around the edg%s" S, f,,“ T
* Lot of learning on your own and from eacEr other gm
+ Hope: Very interactive — in lectures and on slack EEEEmE R

based solely on attention mechanisms, dispensing with recurrence and convolutions
entirely. Experiments on two machine translation tasks show these models to
be superior in quality while being more parallelizable and requiring significantly
less time to train. Our model achieves 28.4 BLEU on the WMT 2014 English-
to-German translation task, improving over the existing best results, including
ensembles, by over 2 BLEU. On the WMT 2014 English-to-French translation task,
our model establishes a new single-model state-of-the-art BLEU score of 41.8 after
training for 3.5 days on eight GPUs, a small fraction of the training costs of the
best models from the literature. We show that the Transformer generalizes well to
other tasks by applying it successfully to English constituency parsing both with
large and limited training data.

Xiv:1706.03762v
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€ My Courses

|_# Cousehome I3
l~ Myscores ... TheAnnotated Transformer
° ° ° Q Notifications | g~ The Annotated Transformer

° #Notes | ™| Entiredocument

O £3 Add to my calendar
@ Unenroll from course
nnnnnnn

° Library
e Pre-reading before lectures —
—

Chats

* Applied & theoretical problem sets

Note: Lectures will not teach practical skills — rely on students to pick up using
suggested tutorials, other resources, and each other.
TFs happy to answer questions!

* (Possibly) scribe notes
* Projects — self chosen and directed.

e No midterm or final

Grading: We'll figure out some grade — hope that's not your loss function ©
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Representation: Is there 8 with small L(6)?

Optimization: Can we find such 6?

Generalization: Can we guarantee connection of L(8) vs L(68)?




Representation: Is there 6 with small L(8)?

Every continuous f:[0,1] — R can be arbitrarily approximated
by g of form g(x) = Ya; ReLU(Bix + )

Proof by picture:
Jga(x) = ReLU(x/6 — a)

h, =g, — .. =—h —h
Jars(x) = ReLU(x/6 — a — 6) a = Ya ~ Ya+s a,b a— p

a a+o a a+od a b
*ReLU(x) = max(x,0)



Representation: Is there 8 with small L(6)?

Every continuous f:[0,1] — R can be arbitrarily approximated

by g

proﬂpproximation Theorem: Every smooth function F: R% — [0,1] can\
gal

Ya+

of form g(x) =Ya; ReLU(Bix +v;)

be e-approximated as a sum of (1/¢)?(4) RelLUs.
(depth 2 neural network)

Counting argument: For every architecture, 3 smooth F: R* - [0,1]

requiring exp(Q(d)) Neurons to 0.1 approximate F

\_
// /

a+o a a+9o

\/

*ReLU(x) = max(x,0)



Optimization: Can we find such 6?
Dimension d:

Gradient Descent  |r/@ - v er?
f"(x) > He(x) = Vof (x) € R4 (psd)

Yer1 = Xe = 1f(xe) 1% 2/4 drop by ~ 2172
d
5 = —nf'(x) —

w 52

flxe +8) = fxe) +6f (x¢) + 7f’,(xt)

fGeern) = O = nf'(e)? + 2L 1) = fe) = nf (o) (1 = 2528

e Ifn <2/f"(x;) then make progress

» Ifn ~1/f"(x) then drop by ~ f'(x)?/f" (xt)



Stochastic Gradient Defsssteeamne

D fl) = -8, Li(x)
Xey1 = X¢ —Nf (X¢) f (x)) = L' (x) for i ~
E[f"(x)] = f'(xe), V[f' ()] = /
Mean 0
Assume f'(x) = f'(x) + ZVarlance i»
Independent

5?2
flxr+6) = fxe) +0f (x¢) + 7f”(xt)

fen) ~ FOe) —nf 0e)? (1= 2E2) 4207 £ (xy)
e Ifn<2/f"(x)and () no < f'(x)?/f" (x) then make progress

* Ifn~1/f"(x,) and (*) then drop by ~ f"(x)*/f" (x;)



Generalization: can we guarant% Empiric

al Risk Minimization (ERM):

A(S) = argmin Ls(f)
Learning JER
S = (X Yiz1n |:> Agortm |z
I NG

Population 0-1 loss L(f) = Pr[f(X) # Y] Empirical 0-1 loss  Lg(f) = %Z?zl L=y,

LK ~ exp(# params) | bias | variance |
Acciimae F.. — § £ .. Zi(fl) — L(fl) + N(O, 1/7’1)
- o lo K Pessimistic
under-fitting over-fitting B max NL(O,l/n) ~ g bound
. Test risk Isisk [
'_M '
Gt '
=
\ 1
~ o ‘Training risk _ B “Scaling
sweet spot\; -~ = — — 11’2ilsl’1k[:(fi) i (log K) CZ? |aWS"

Capacity of H
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Why architecture?

Inductive bias: “Hard wire" prior knowledge to use less data.

Execution efficiency: Find architectures that use smaller number of total
operations or better match of operations to the hardware.

Training efficiency: Find architectures that are a good match to the
optimization algorithm (e.g., gradient descent).

What else?



"No Free
Lunch”

s inductive bias everything? ‘esve

Inductive bias: “Hard wire” prior knowledge to use less data.

under-fitting over-fitting

. Test risk

Neural Networks and the Bias/Variance Dilemma ‘ 1

Stuart Geman

'CMD Division of Applied Mathematics,
. p—{ N . . "
o Brown University, Providence, RI 02912 USA
N , Elie Bienenstock
~ o . . A — — —
- Training risk René Doursat
<& “SpC = ’ i Figure 11: Bias and variance of single-hidden-unit and 15-hidden-unit feed-
sweet spot v~ ESPC I, 10 rue ‘vﬂllqllt m, forward neural networks, as functions of input vector. Regression surface is
e —-r o - depicted in Figure 3b. Scale is by gray levels, running from largest values,
. / )005 P‘) ris, Fr""‘ e coded in black, to zero, coded in white. (a) Bias of single-hidden-unit machine.
C apaclty Of H (b) Variance of single-hidden-unit machine. (c) Bias of 15-hidden-unit machine.
(d) Variance of 15-hidden-unit machine. Bias decreases and variance increases

with the addition of hidden units.

“To mimic substantial human behavior ... will require complex machinery. Inferring this
complexity from examples .. [is] not feasible: too many examples would be needed.
Important properties must be built-in or “hard-wired,” ”

Of course most neural modelers do not take tabula rasa architectures as serious models
of the nervous system ... identifying the right “preconditions” is the substantial problem
in neural modeling. ... categorization must be largely built in



s Inductive bias aadhynigihg?
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“No inductive bias”: Boolean Circuits

Gates: AND/OR/NOT
X V X, V X3

\§§§‘4 X1

P ’\‘§\\ X1+ (1 —x)+x;=21
QaRgd &% .

pecial case o reshold function
§\~§s“{( Special f Threshold funct
\ N

Non differentiable

Destroys training efficiency




Boad\gblp Circuits

"No inductive bias”:

(or other non-linearities)

(x,w)>Db
(x,w)<b

(x,w)—>b
T,

=

%

-

C C (J
o7 N\ </

Q}X\Mﬁ’«\ro

0,

fw,b (x)



Intuition: Sparsity is all you neec

Model Training Method CIFAR-10 CIFAR-100 SVHN
S-CONV SGD 87.05 62.51 93.38
S-LOCAL SGD 85.86 62.03 93.98
MLP (Neyshabur et al., 2019) SGD (no Augmentation) 58.1 - 84.3
MLP (Mukkamala and Hein, 2017) Adam/RMSProp 72.2 39.3 -
MLP (Mocanu et al., 2018) SET (Sparse Evolutionary Training) 74.84 - -
MLP (Urban et al., 2017) deep convolutional teacher 74.3 - -
MLP (Lin et al., 2016) unsupervised pretraining with ZAE 78.62 - -
MLP (3-FC) SGD 75.12 50.75 86.02
MLP (S-FC) SGD 78.63 51.43 91.80
MLP (S-FC) B-LAssO (8 =0) 82.45 55.58 93.80
MLP (S-FC) B-LAssO (B =1) 82.52 55.96 93.66
MLP (S-FC) B-LAssO (B = 50) 85.19 59.56  94.07

Neyshabur 2020



Execution efficiency: Find architectures that use smaller number of total
operations or better match of operations to the hardware.

GPUs dominance

Operations/$ vs. Year

First-Order approximation:

100,000,000.00

GPU = Dense Matrix Multiply Oracle

100,000.00

100.00

Ops/$ (log scale)

0.10

1970 1980 1990 2000 2010 2020

Year

Wikipedia
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Digression: Softmax

Softmax p(/) x exp(0 - x;)




Digression: Softmax
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Softmax p(/) x exp(3.3 - x;)
Distribution becomes
very sparse very fast.




Next-Token Prediction
Input: ¢4, ..., t,, € [k]

Output: p distribution over [k]

Loss: —logp(t,,4+1)



Next-Token Predict

xl_et

Input: ¢4, ..., t,, € [k] |:>

Embedding: e; ...e; € R?

Positional embedding: f; ... f,, € R%

p(0) o exp({er, Yne1)) S

lelg
+/i

4

5 d
X1 Xy, Xn+1 ER y

Transformer

V1 Yo Yns1 € RY ‘

Output: p distribution over [k]

Loss: —logp(t,,4+1)

Each y; depends on
{xilj <}




Transformers oty on preceding | areere
MLP blocks enfon
| A N P
7/{ 7 )

N

Outputs computed
block by block

Cheating: Entries of A
depend on input




Attention

Transformers A
A; jis H blocks wfﬂs to be < 0(1) ‘ |
N Qnxi - Kpx; %
A;jp < exp ( \/d—k ) V: %
Why Vd,,? //////ﬁ
» Two vectors u, v in d dimensions, typically have |u - v| = "u\"/gv"

e If M isarandom d;xd, matrix with N(0,1) entries then || Mx ||l= ./d; || x ||

d
Proof: E(Mx){ = z E|M7x?] =l x 112
=1



Attention

Transformers A

A; : is H blocks wfﬂs to be < 0(1) ‘ |
i,j

Ai,j,h & exp (Qh L h ]) V]

Ja.

Why Vd,?

* Two vectors u, v in d dimensions, typically have |u - v| =

e If M isarandom d;xd, matrix with N(0,1) entries then || Mx ||l= ./d; || x ||

* We use layer norm to ensure || x; I=1l x; lI= 1

D lowx - K| ~
h*1 h*j dk



Attention

Transformers |
A; ; is H blocks i |
Aj i p O exp (thi éfh’%‘) v %/q

Why multihead? o ////////%

Softmax p(i) x exp(3.3 - x;)
Distribution becomes
very sparse very fast.




Limitations of transformers

1) Finite context n Q n = 4,000 enough for language?

2) Quadratic overhead in n

B N

Approaches to fix involve
approximation




