CS 229br: Foundations of Deep Learning

Boaz Barak

Gustaf Ahdritz Gal Kaplun

What is learning?

Parameterized / Adaptable system

What is learning?

Parameterized /
 Adaptable system

What is learning?

Traditionally:

Loss: Well specified $L(\theta)$ can compute estimator $\hat{L}(\theta)$
Supervised learning: $L(\theta)=\mathbb{E}\left[\ell\left(f_{\theta}(x), y\right)\right]$
Reinforcement learning: $L(\theta)=-\mathbb{E}\left[\sum_{i=0}^{H} r\left(s_{i}\right)\right]$

Representation: Is there θ with small $\hat{L}(\theta)$?
Optimization: Can we find such θ ?
Generalization: Can we guarantee connection of $L(\theta)$ vs $\widehat{L}(\theta)$?

What is learning? Modern:
"School"/"Training"

"Real-world"/"Deployment"

What is learning? Modern:

"School"/"Training"

Loss wellspecified but not useful
"Bootcamp"/"Fine tuning"

Environment
Well-specified loss closer to practical use
"Real-world"/"Deployment"

Environment
No single quantifiable loss
(s)

The species can be divided into four genetically distinct populations, one widespread population, and three 1 ?t which have diverged due to small effective population sizes, possibly due to adaptation to the local environment. The first of these is the population of lobsters from northern Norway, which is characterized by a lower growth rate and a longer intermoult period than the other populations. The second is the population of lobsters from the Faroe Islands, which is characterized by a higher growth rate than the other populations. The third is the population of lobsters from the south coast of Norway, which is characterized by a unique shell coloration and a lower growth rate than the other populations. Finally, the fourth is the population of lobsters from the Baltic Sea, which is characterized by a greater body size and a higher growth rate than the other populations.

Tysfjorden, along with neighbouring ba fjords in Northern Norway, is home to the world's northernmost populations of H. gammarus.

[^0]Homarus gammarus is found across the north-eastern Atlantic Ocean from northern Norway to the Azores and Morocco, not including the Baltic Sea. It is also present in most of the Mediterranean Sea, only missing from the section east of Crete, and along only the south-west coast of the Black Sea. ${ }^{[2]}$ The northernmost populations are found in the Norwegian fjords Tysfjorden and Nordfolda, inside the Arctic Circle. ${ }^{[11]}$

The species can be divided into four genetically distinct populations, one widespread population, and three which have diverged due to small effective population sizes, possibly due to adaptation to the local environment. ${ }^{[12]}$ The first of these is the population of lobsters from northern Norway, which have been referred to as the "midnight-sun lobster" ${ }^{[11]}$ The populations in the Mediterranean Sea are distinct from those in the Atlantic Ocean. The last distinct population is found in part of the Netherlands: samples from the Oosterschelde were distinct from those collected in the North Sea or English

Example: ChatGPT

"Basic schooling": Next-Token Prediction
Input: Random text $\left(x_{1}, \ldots, x_{n}\right)$ from Internet Output: (Prob distribution over) token \hat{x}

$$
\left.\operatorname{LOSS}:-\mathbb{E}\left[\log \operatorname{Pr}\left[\hat{x}=x_{n+1}\right]\right]\right]
$$

Example: ChatGPT

"Basic schooling": Next-Token Prediction
 Input: Random text $\left(x_{1}, \ldots, x_{n}\right)$ from Internet Output: (Prob distribution over) token \hat{x}

$$
\text { LOSS: } \left.-\mathbb{E}\left[\log \operatorname{Pr}\left[\hat{x}=x_{n+1}\right]\right]\right]
$$

Example: ChatGPT

"Basic schooling": Next-Token Prediction

 Input: Random text $\left(x_{1}, \ldots, x_{n}\right)$ from Internet Output: (Prob distribution over) token $\hat{x}$$$
\text { Loss: } \left.-\mathbb{E}\left[\log \operatorname{Pr}\left[\hat{x}=x_{n+1}\right]\right]\right]
$$

"Bootcamp": Instruct Tuning
Input: Random human-produced prompt
Output: Response
Loss: (learned version of) human rating

- Taste of research results, questions, experiments, and more
- Goal: Get to state of art research:
- Most lectures include paper from last 2 years
- Though some also "wisdom of the ancients"
- Very experimental "rough around the edgễis"
- Lot of learning on your own and from eacbo other
- Hope: Very interactive - in lectures and onslack

Attention Is All You Need

noam@google.com

nikip@google.com

Lukasz Kaiser* Google Brain lukaszkaiser@google.com

Google Research 1lion@google.com

Aidan N. Gomez* ${ }^{\dagger}$
University of Toronto
aidan@cs.toronto.edu

Illia Polosukhin ${ }^{*}$
illia. polosukhin@gmail.com

Abstract

The dominant sequence transduction models are based on complex recurrent or convolutional neural networks that include an encoder and a decoder. The best performing models also connect the encoder and decoder through an attention mechanism. We propose a new simple network architecture, the Transformer, based solely on attention mechanisms, dispensing with recurrence and convolutions be superior in quality while being more parallelizable and requiring significantly less time to train. Our model achieves 28.4 BLEU on the WMT 2014 English-to-German translation task, improving over the existing best results, including ensembles, by over 2 BLEU. On the WMT 2014 English-to-French translation task, our model establishes a new single-model state-of-the-art BLEU score of 41.8 after raining for 3.5 days on eight GPUs, a small fraction of the training costs of the best models from the literature. We show that the Transformer generalizes well to other tasks by applying it successfully to English constituency parsing both with large and limited training data

Student expectations

Not set in stone but will include:

- Pre-reading before lectures

- Applied \& theoretical problem sets

Note: Lectures will not teach practical skills - rely on students to pick up using suggested tutorials, other resources, and each other.
TFs happy to answer questions!

- (Possibly) scribe notes
- Projects - self chosen and directed.
- No midterm or final

Grading: We'll figure out some grade - hope that's not your loss function ©

What is learning?

Traditionally:

Modern:

Loss: Well specified $L(\theta)$ can compute estimator $\hat{L}(\theta)$
Supervised learning: $L(\theta)=\mathbb{E}\left[\ell\left(f_{\theta}(x), y\right)\right]$
Reinforcement learning: $L(\theta)=-\mathbb{E}\left[\sum_{i=0}^{H} r\left(s_{i}\right)\right]$
Representation: Is there θ with small $\hat{L}(\theta)$?
Optimization: Can we find such θ ?
Generalization: Can we guarantee connection of $L(\theta)$ vs $\hat{L}(\theta)$?

What is learning?

Traditionally:

Representation: Is there θ with small $\hat{L}(\theta)$?
Optimization: Can we find such θ ?
Generalization: Can we guarantee connection of $L(\theta)$ vs $\hat{L}(\theta)$?

Representation: Is there θ with small $\hat{L}(\theta)$?
Every continuous $f:[0,1] \rightarrow \mathbb{R}$ can be arbitrarily approximated by g of form

$$
g(x)=\sum \alpha_{i} \operatorname{ReLU}\left(\beta_{i} x+\gamma_{i}\right)
$$

Proof by picture:

$$
\begin{aligned}
& g_{a}(x)=\operatorname{ReLU}(x / \delta-a) \\
& g_{a+\delta}(x)=\operatorname{ReLU}(x / \delta-a-\delta)
\end{aligned}
$$

$$
h_{a}=g_{a}-g_{a+\delta}
$$

$$
I_{a, b}=h_{a}-h_{b}
$$

Representation: Is there θ with small $\hat{L}(\theta) ?$
Every continuous $f:[0,1] \rightarrow \mathbb{R}$ can be arbitrarily approximated
by g of form

$$
g(x)=\sum \alpha_{i} \operatorname{ReLU}\left(\beta_{i} x+\gamma_{i}\right)
$$

Optimization: Can we find such θ ?

Gradient Descent

$$
x_{t+1}=x_{t}-\eta f^{\prime}\left(x_{t}\right)
$$

$$
\delta=-\eta f^{\prime}\left(x_{t}\right)
$$

Dimension d :
$f^{\prime}(x) \rightarrow \nabla f(x) \in \mathbb{R}^{d}$
$f^{\prime \prime}(x) \rightarrow H_{f}(\mathrm{x})=\nabla_{2} f(x) \in \mathbb{R}^{d \times d}(\mathrm{psd})$
If $\eta \lesssim 2 / \lambda_{d}$ drop by $\sim \frac{\lambda_{1}}{\lambda_{d}}\|\nabla\|^{2}$
$x_{t} x_{t+1}$
$f\left(x_{t}+\delta\right) \approx f\left(x_{t}\right)+\delta f^{\prime}\left(x_{t}\right)+\frac{\delta^{2}}{2} f^{\prime \prime}\left(x_{t}\right)$
$f\left(x_{t+1}\right) \approx f\left(x_{t}\right)-\eta f^{\prime}\left(x_{t}\right)^{2}+\frac{\eta^{2} f^{\prime}\left(x_{t}\right)^{2}}{2} f^{\prime \prime}\left(x_{t}\right)=f\left(x_{t}\right)-\eta f^{\prime}\left(x_{t}\right)^{2}\left(1-\frac{\eta f^{\prime \prime}\left(x_{t}\right)}{2}\right)$

- If $\eta<2 / f^{\prime \prime}\left(x_{t}\right)$ then make progress
- If $\eta \sim 1 / f^{\prime \prime}\left(x_{t}\right)$ then drop by $\sim f^{\prime}\left(x_{t}\right)^{2} / f^{\prime \prime}\left(x_{t}\right)$

Stochastic Gradient Def Machine Learning:

$$
\begin{aligned}
& x_{t+1}=x_{t}-\eta f^{\prime}\left(x_{t}\right) \\
& \mathbb{E}\left[f^{\prime}(x)\right]=f^{\prime}\left(x_{t}\right), V\left[\widehat{f^{\prime}}(x)\right]=\sigma^{2} \\
& \text { Assume } \widehat{f}^{\prime}(x)=f^{\prime}(x)+N \\
& f\left(x_{t}+\delta\right) \approx f\left(x_{t}\right)+\delta f^{\prime}\left(x_{t}\right)+\frac{\delta^{2}}{2} f^{\prime \prime}\left(x_{t}\right)
\end{aligned}
$$ Variance σ^{2} Independent

$$
f\left(x_{t+1}\right) \approx f\left(x_{t}\right)-\eta f^{\prime}\left(x_{t}\right)^{2}\left(1-\frac{\eta f^{\prime \prime}\left(x_{t}\right)}{2}\right)+\eta^{2} \sigma^{2} f^{\prime \prime}\left(x_{t}\right)
$$

- If $\eta<2 / f^{\prime \prime}\left(x_{t}\right)$ and $\left(^{*}\right) \eta \sigma^{2} \ll f^{\prime}\left(x_{t}\right)^{2} / f^{\prime \prime}(x)$ then make progress
- If $\eta \sim 1 / f^{\prime \prime}\left(x_{t}\right)$ and (*) then drop by $\sim f^{\prime}\left(x_{t}\right)^{2} / f^{\prime \prime}\left(x_{t}\right)$

Generalization: Can we guarantee

Empirical Risk Minimization (ERM):

$$
A(S)=\arg \min _{f \in \mathcal{F}} \hat{\mathcal{L}}_{S}(f)
$$

Empirical 0-1 loss $\quad \hat{\mathcal{L}}_{S}(f)=\frac{1}{n} \sum_{i=1}^{n} 1_{f\left(x_{i}\right) \neq y_{i}}$ Population 0-1 loss $\mathcal{L}(f)=\operatorname{Pr}[f(X) \neq Y]$

Part II:
Architecture

Why architecture?

Inductive bias: "Hard wire" prior knowledge to use less data.

Execution efficiency: Find architectures that use smaller number of total operations or better match of operations to the hardware.

Training efficiency: Find architectures that are a good match to the optimization algorithm (e.g., gradient descent).

What else?

Inductive bias: "Hard wire" prior knowledge to use less data. Is inductive bias everything?

Neural Networks and the Bias/Variance Dilemma

Stuart Geman

Division of Applied Mathematics,
Brown University, Providence, RI 02912 USA
Elie Bienenstock
René Doursat
ESPCI, 10 rue Vauquelin,
75005 Paris, France

Figure 11 : Bias and variance of single-hidden-unit and 15 -hidden-unit feed-
forward neural networks, as functions of input vector. Regression surface is forward neural networks, as functions of input vector. Regression surface is
depicted in Figure 3 b . Scale is by gray levels, running from largest values. depicted in Figure 3 b. Scale is by gray levels, running from largest values,
coded in black, to zero, coded in white. (a) Bias of single-hidden-unit machine.
 (d) Variance of 15 -hidden-unit mac
with the addition of hidden units.
"To mimic substantial human behavior ... will require complex machinery. Inferring this complexity from examples .. [is] not feasible: too many examples would be needed. Important properties must be built-in or "hard-wired," "

Of course most neural modelers do not take tabula rasa architectures as serious models of the nervous system ... identifying the right "preconditions" is the substantial problem in neural modeling. ... categorization must be largely built in

Is inductive bias aethyitbipl?

"No inductive bias": Boolean Circuits

Gates: AND/OR/NOT

$$
\begin{aligned}
& x_{1} \vee \bar{x}_{2} \vee x_{3} \\
& x_{1}+\left(1-x_{2}\right)+x_{3} \geq 1
\end{aligned}
$$

Special case of Threshold function

Non differentiable
Destroys training efficiency

$$
f_{w, b}(x)= \begin{cases}1, & \langle x, w\rangle>b \\ 0, & \langle x, w\rangle \leq b\end{cases}
$$

"No inductive bias": Boak\&aP Circuits

Intuition: Sparsity is all you need

Model	Training Method	CIFAR-10	CIFAR-100	SVHN
S-CONV	SGD	87.05	62.51	93.38
S-LOCAL	SGD	85.86	62.03	93.98
MLP (Neyshabur et al., 2019)	SGD (no Augmentation)	58.1	-	84.3
MLP (Mukkamala and Hein, 2017)	Adam/RMSProp	72.2	39.3	-
MLP (Mocanu et al., 2018)	SET(Sparse Evolutionary Training)	74.84	-	-
MLP (Urban et al., 2017)	deep convolutional teacher	74.3	-	-
MLP (Lin et al., 2016)	unsupervised pretraining with ZAE	78.62	-	-
MLP (3-FC)	SGD	75.12	50.75	86.02
MLP (S-FC)	SGD	78.63	51.43	91.80
MLP (S-FC)	β-LASSO $(\beta=0)$	82.45	55.58	93.80
MLP (S-FC)	β-LASSO $(\beta=1)$	82.52	55.96	93.66
MLP (S-FC)	β-LASSO $(\beta=50)$	$\mathbf{8 5 . 1 9}$	$\mathbf{5 9 . 5 6}$	$\mathbf{9 4 . 0 7}$

Execution efficiency: Find architectures that use smaller number of total

 operations or better match of operations to the hardware.

Part III:
 Transformers

Digression: Softmax

Softmax $p(i) \propto \exp \left(0 \cdot x_{i}\right)$

Digression: Softmax

Next-Token Prediction

Input: $t_{1}, \ldots, t_{n} \in[k]$
Output: p distribution over [k]

Loss: $-\log p\left(t_{n+1}\right)$

Output: p distribution over [k]

Loss: $-\log p\left(t_{n+1}\right)$

Transformers

Each output depends only on preceding

Transformers

Attention
$A_{i, j}$ is H blocks
$A_{i, j, h} \propto \exp \left(\frac{Q_{h} x_{i} \cdot K_{h} x_{j}}{\sqrt{d_{k}}}\right) V_{j}$
Why \sqrt{d}_{k} ?
We want this to be $\leq O$ (1)

- Two vectors u, v in d dimensions, typically have $|u \cdot v| \approx \frac{\|u\| \cdot\|v\|}{\sqrt{d}}$
- If M is a random $d_{k} \times d_{e}$ matrix with $N(0,1)$ entries then $\|M x\| \approx \sqrt{d_{k}}\|x\|$

$$
\text { Proof: } \mathbb{E}(M x)_{i}^{2}=\sum_{j=1}^{d} \mathbb{E}\left[M_{i, j}^{2} x_{j}^{2}\right]=\|x\|^{2}
$$

Transformers

Attention
$A_{i, j}$ is H blocks
$A_{i, j, h} \propto \exp \left(\frac{Q_{h} x_{i} \cdot K_{h} x_{j}}{\sqrt{d_{k}}}\right) V_{j}$
Why \sqrt{d}_{k} ?
We want this to be $\leq O$ (1)

- Two vectors u, v in d dimensions, typically have $|u \cdot v| \approx \frac{\|u\| \cdot\|v\|}{\sqrt{d}}$
- If M is a random $d_{k} \times d_{e}$ matrix with $N(0,1)$ entries then $\|M x\| \approx \sqrt{d_{k}}\|x\|$
- We use layer norm to ensure $\left\|x_{i}\right\|=\left\|x_{j}\right\| \approx 1$
$\square\left|Q_{h} x_{i} \cdot K_{h} x_{j}\right| \approx \frac{d_{k}}{\sqrt{d_{k}}}$

Transformers
$A_{i, j}$ is H blocks

$$
A_{i, j, h} \propto \exp \left(\frac{Q_{h} x_{i} \cdot K_{h} x_{j}}{\sqrt{d_{k}}}\right) V_{j}
$$

Why multihead?

Attention

Limitations of transformers

1) Finite context $n>n=4,000$ enough for language?
2) Quadratic overhead in n

[^0]: Channel. ${ }^{[12][13]}$

