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What is learning?

𝑓!
Environment

Parameterized / 
Adaptable system

Loss / Reward / 
Metric



What is learning?



What is learning?

Traditionally:
Loss: Well specified 𝐿(𝜃) can compute estimator %𝐿(𝜃)

Supervised learning: 𝐿 𝜃 = 𝔼[ℓ 𝑓! 𝑥 , 𝑦 ]

Reinforcement learning: 𝐿 𝜃 = −𝔼 ∑"#$% 𝑟 𝑠"

Representation: Is there 𝜃 with small 0𝐿 𝜃 ?

Optimization: Can we find such 𝜃?

Generalization: Can we guarantee connection of 𝐿(𝜃) vs 0𝐿(𝜃)?



What is learning? Modern:

𝑓! Environment

“School”/”Training”
Loss well-

specified but not 
useful

“Real-world”/”Deployment”

𝑓! Environment No single 
quantifiable loss



What is learning? Modern:

𝑓! Environment

“School”/”Training”
Loss well-

specified but not 
useful

“Real-world”/”Deployment”

𝑓! Environment
No single 

quantifiable loss

“Bootcamp”/”Fine tuning”
𝑓! Environment

Well-specified
loss closer to 
practical use



Example: ChatGPT
“Basic schooling”: Next-Token Prediction

Input: Random text (𝑥&, … , 𝑥') from Internet
Output: (Prob distribution over) token 4𝑥

Loss:  −𝔼 log Pr[4𝑥 = 𝑥'(&]]

The species can be divided into four genetically 
distinct populations , one widespread population , and 
three which have diverged due to small effective 
population sizes , possibly due to adaptation to the 
local environment . The first of these is the 
population of lobsters from northern Norway



Example: ChatGPT
“Basic schooling”: Next-Token Prediction

Input: Random text (𝑥!, … , 𝑥") from Internet
Output: (Prob distribution over) token 4𝑥

Loss:  −𝔼 log Pr[4𝑥 = 𝑥"#!]]

Chinchilla curve



Example: ChatGPT
“Basic schooling”: Next-Token Prediction

Input: Random text (𝑥!, … , 𝑥") from Internet
Output: (Prob distribution over) token 4𝑥

Loss:  −𝔼 log Pr[4𝑥 = 𝑥"#!]]



Example: ChatGPT

“Bootcamp”: Instruct Tuning
Input: Random human-produced prompt

Output: Response
Loss: (learned version of) human rating

40K

“Basic schooling”: Next-Token Prediction
Input: Random text (𝑥!, … , 𝑥") from Internet

Output: (Prob distribution over) token 4𝑥
Loss:  −𝔼 log Pr[4𝑥 = 𝑥"#!]]

500B



This course
• Taste of research results, questions, experiments, and more
• Goal: Get to state of art research:
• Most lectures include paper from last 2 years
• Though some also ”wisdom of the ancients”

• Very experimental “rough around the edges”
• Lot of learning on your own and from each other
• Hope: Very interactive – in lectures and on slack



Student expectations
Not set in stone but will include:
• Pre-reading before lectures
• Applied & theoretical problem sets

Note: Lectures will not teach practical skills – rely on students to pick up using 
suggested tutorials, other resources, and each other.
TFs happy to answer questions!

• (Possibly) scribe notes

• Projects – self chosen and directed.
• No midterm or final

Grading: We’ll figure out some grade – hope that’s not your loss function J



What is learning?

Traditionally: Modern:



What is learning?

Traditionally:
Loss: Well specified 𝐿(𝜃) can compute estimator %𝐿(𝜃)

Supervised learning: 𝐿 𝜃 = 𝔼[ℓ 𝑓$ 𝑥 , 𝑦 ]

Reinforcement learning: 𝐿 𝜃 = −𝔼 ∑%&'( 𝑟 𝑠%

Representation: Is there 𝜃 with small 0𝐿 𝜃 ?

Optimization: Can we find such 𝜃?

Generalization: Can we guarantee connection of 𝐿(𝜃) vs 0𝐿(𝜃)?



𝑔(𝑥) = ∑𝛼! 𝑅𝑒𝐿𝑈(𝛽!𝑥 + 𝛾!)

Proof by picture:

𝑎 𝑎 + 𝛿

𝑔) 𝑥 = 𝑅𝑒𝐿𝑈(𝑥/𝛿 − 𝑎)
𝑔)#* 𝑥 = 𝑅𝑒𝐿𝑈(𝑥/𝛿 − 𝑎 − 𝛿)

𝑎 𝑎 + 𝛿
0

1

ℎ) = 𝑔) − 𝑔)#* 𝐼),, = ℎ) − ℎ,

Every continuous 𝑓: 0,1 → ℝ can be arbitrarily approximated 
by 𝑔 of form

𝑎 𝑏
*𝑅𝑒𝐿𝑈 𝑥 = max(𝑥, 0)

Representation: Is there 𝜃 with small 0𝐿 𝜃 ?



𝑔(𝑥) = ∑𝛼! 𝑅𝑒𝐿𝑈(𝛽!𝑥 + 𝛾!)

Proof by picture:

𝑎 𝑎 + 𝛿

𝑔) 𝑥 = 𝑅𝑒𝐿𝑈(𝑥/𝛿 − 𝑎)
𝑔)#* 𝑥 = 𝑅𝑒𝐿𝑈(𝑥/𝛿 − 𝑎 − 𝛿)

𝑎 𝑎 + 𝛿
0

1

ℎ) = 𝑔) − 𝑔)#* 𝐼),, = ℎ) − ℎ,

Every continuous 𝑓: 0,1 → ℝ can be arbitrarily approximated 
by 𝑔 of form

𝑎 𝑏
*𝑅𝑒𝐿𝑈 𝑥 = max(𝑥, 0)

Approximation Theorem: Every smooth function 𝐹:ℝ/ → [0,1] can 
be 𝜖-approximated as a sum of 1/𝜖 0 / ReLUs.
(depth 2 neural network)

Counting argument: For every architecture, ∃ smooth 𝐹:ℝ/ → [0,1]
requiring exp Ω 𝑑 Neurons to 0.1 approximate 𝐹

Representation: Is there 𝜃 with small 0𝐿 𝜃 ?



Gradient Descent

𝑥-

𝑓

𝑥-#!

𝑥-#! = 𝑥- − 𝜂𝑓′(𝑥-)

𝑓 𝑥- + 𝛿 ≈ 𝑓 𝑥- + 𝛿𝑓. 𝑥- +
𝛿/

2
𝑓.. 𝑥-

𝑓 𝑥-#! ≈ 𝑓 𝑥- − 𝜂𝑓. 𝑥- / + 0!1" 2# !

/ 𝑓.. 𝑥-

• If 𝜂 < 2/𝑓′′(𝑥-) then make progress 

• If 𝜂 ∼ 1/𝑓′′(𝑥-) then drop by ∼ 𝑓. 𝑥- //𝑓′′(𝑥-)

= 𝑓 𝑥- − 𝜂𝑓. 𝑥- /(1 − 01"" 2#
/ )

Optimization: Can we find such 𝜃?
Dimension 𝑑:
𝑓. 𝑥 → ∇𝑓 𝑥 ∈ ℝ3
𝑓.. 𝑥 → 𝐻1 x = ∇/𝑓 𝑥 ∈ ℝ3×3 (psd)
If 𝜂 ≲ 2/𝜆3 drop by ∼ 5$

5%
∇ /

𝛿 = −𝜂𝑓′(𝑥-)



Stochastic Gradient Descent

𝑥-

𝑓

𝑥-#!

𝑥-#! = 𝑥- − 𝜂V𝑓′(𝑥-)

𝑓 𝑥- + 𝛿 ≈ 𝑓 𝑥- + 𝛿𝑓. 𝑥- +
𝛿/

2
𝑓.. 𝑥-

𝑓 𝑥-#! ≈ 𝑓 𝑥- − 𝜂𝑓. 𝑥- / 1 − 01"" 2#
/ + 𝜂/𝜎/𝑓′′(𝑥-)

• If 𝜂 < 2/𝑓′′(𝑥-) and  (*) 𝜂𝜎/ ≪ 𝑓. 𝑥- //𝑓′′(𝑥) then make progress 

• If 𝜂 ∼ 1/𝑓′′(𝑥-) and (*) then drop by ∼ 𝑓. 𝑥- //𝑓′′(𝑥-)

𝔼 V𝑓. 𝑥 = 𝑓′(𝑥-), 𝑉 V𝑓. 𝑥 = 𝜎/

Assume V𝑓. 𝑥 = 𝑓. 𝑥 + 𝑁
Mean 0
Variance 𝜎/
Independent

In Machine Learning: 
𝑓 𝑥 = !

"
∑%&!" 𝐿%(𝑥)

V𝑓. 𝑥- = 𝐿%′(𝑥) for 𝑖 ∼ [𝑛]



Generalization: Can we guarantee connection of 𝐿(𝜃) vs 0𝐿(𝜃)?
Learning 

Algorithm
𝐴

S = 𝑥%, 𝑦% %&!.." 𝑓 ∈ ℱ

Empirical Risk Minimization (ERM):
𝐴 𝑆 = argmin

1∈ℱ
eℒ9(𝑓)

ℒ 𝑓 = Pr[𝑓 𝑋 ≠ 𝑌] eℒ9 𝑓 = !
"
∑%&!" 11 2& :;&Population 0-1 loss Empirical 0-1 loss

Assume ℱ< = { 𝑓!, … , 𝑓<}

𝐾 (log scale)

bias variance

Lo
ss

max
!=%=>

𝑁%(0,1/𝑛) ≈
log𝐾
𝑛

min
!=%=>

ℒ 𝑓% ≈ log𝐾 ?@?

Pessimistic 
bound

“Scaling 
laws”

𝐾 ≈ exp(# 𝑝𝑎𝑟𝑎𝑚𝑠)

eℒ 𝑓% = ℒ 𝑓% +𝑁(0, 1/𝑛)



Part II:
Architecture



Why architecture?

Inductive bias: “Hard wire” prior knowledge to use less data.

Execution efficiency: Find architectures that use smaller number of total 
operations or better match of operations to the hardware. 

Training efficiency: Find architectures that are a good match to the 
optimization algorithm (e.g., gradient descent).

What else?



Inductive bias: “Hard wire” prior knowledge to use less data.

“To mimic substantial human behavior … will require complex machinery. Inferring this 
complexity from examples .. [is] not feasible: too many examples would be needed. 
Important properties must be built-in or “hard-wired,” ”

Of course most neural modelers do not take tabula rasa architectures as serious models 
of the nervous system … identifying the right “preconditions” is the substantial problem 
in neural modeling. … categorization must be largely built in

Is inductive bias everything?
“No Free 
Lunch”



Is inductive bias nothing?

Nakkiran

Is inductive bias everything?
Different “burn in” 

time

Same exponent



“No inductive bias”:
Gates: AND/OR/NOT

𝑥; ∨ 𝑥< ∨ 𝑥=
𝑥; + 1 − 𝑥< + 𝑥= ≥ 1

Special case of Threshold function

Boolean Circuits

𝑓A,, 𝑥 = n1, 𝑥, 𝑤 > 𝑏
0, 𝑥, 𝑤 ≤ 𝑏

Non differentiable

Destroys training efficiency



“No inductive bias”: MLP

𝑓A,, 𝑥 = n1, 𝑥, 𝑤 > 𝑏
0, 𝑥, 𝑤 ≤ 𝑏

𝑥,𝑤 − 𝑏
−

Units: ReLUs
(or other non-linearities)

Boolean Circuits



Intuition: Sparsity is all you need

Neyshabur 2020



Execution efficiency: Find architectures that use smaller number of total 
operations or better match of operations to the hardware. 

Wikipedia

GPUs dominance

First-Order approximation:

GPU = Dense Matrix Multiply Oracle



Part III: 
Transformers



Digression: Softmax



Digression: Softmax

Distribution becomes 
very sparse very fast.



Next-Token Prediction
Input: 𝑡;, … , 𝑡> ∈ [𝑘]

Output: 𝑝 distribution over [𝑘]

Loss: − log 𝑝(𝑡>?;)



Next-Token Prediction
Input: 𝑡;, … , 𝑡> ∈ [𝑘]

𝑒!…𝑒> ∈ ℝ3Embedding:

𝑥% = 𝑒-&

Output: 𝑝 distribution over [𝑘]

𝑥;…𝑥> , P𝑥>?; ∈ ℝ/

𝑝 𝑖 ∝ exp( 𝑒%, 𝑦"#! ) 𝑦;…𝑦> , 𝑦>?; ∈ ℝ/

Loss: − log 𝑝(𝑡>?;)

Each 𝑦% depends on 
{𝑥B|𝑗 < 𝑖}

Transformer

Positional embedding: 𝑓!…𝑓" ∈ ℝ3

+𝑓%



Transformers
Input

AttentionMLP

Cheating: Entries of 𝐴
depend on input

𝐴

Each output depends 
only on preceding 

blocks

Outputs computed 
block by block



Transformers Attention

𝐴
𝐴!,@ is 𝐻 blocks

𝐴!,@,A ∝ exp
𝑄A𝑥! ⋅ 𝐾A𝑥@

𝑑B
𝑉@

Why 𝑑B?

• Two vectors 𝑢, 𝑣 in 𝑑 dimensions, typically have 𝑢 ⋅ 𝑣 ≈ ∥D∥⋅∥F∥
3

𝔼 𝑀𝑥 %
/ =|

B&!

3

𝔼 𝑀%,B
/ 𝑥B/ =∥ 𝑥 ∥/

We want this to be ≤ 𝑂(1)

• If 𝑀 is a random 𝑑>×𝑑G matrix with 𝑁(0,1) entries then ∥ 𝑀𝑥 ∥≈ 𝑑> ∥ 𝑥 ∥

Proof:



Transformers Attention

𝐴
𝐴!,@ is 𝐻 blocks

𝐴!,@,A ∝ exp
𝑄A𝑥! ⋅ 𝐾A𝑥@

𝑑B
𝑉@

Why 𝑑B?

We want this to be ≤ 𝑂(1)

• We use layer norm to ensure ∥ 𝑥% ∥=∥ 𝑥B ∥≈ 1

𝑄H𝑥% ⋅ 𝐾H𝑥B ≈
𝑑>
𝑑>

• Two vectors 𝑢, 𝑣 in 𝑑 dimensions, typically have 𝑢 ⋅ 𝑣 ≈ ∥D∥⋅∥F∥
3

• If 𝑀 is a random 𝑑>×𝑑G matrix with 𝑁(0,1) entries then ∥ 𝑀𝑥 ∥≈ 𝑑> ∥ 𝑥 ∥



Transformers
𝐴!,@ is 𝐻 blocks

𝐴!,@,A ∝ exp
𝑄A𝑥! ⋅ 𝐾A𝑥@

𝑑B
𝑉@

Why multihead?

Attention

𝐴



Limitations of transformers

1) Finite context 𝑛

2) Quadratic overhead in 𝑛

𝑛 = 4,000 enough for language?

Approaches to fix involve 
approximation


