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· Review the basic notion of probability theory that we will use.

· Sample spaces, and in particular the space 

· Events, probabilities of unions and intersections.

· Random variables and their expectation, variance, and standard deviation.

· Independence and correlation for both events and random variables.

· Markov, Chebyshev and Chernoff tail bounds (bounding the probability that a random variable will deviate from its expectation).
“God doesn’t play dice with the universe”, Albert Einstein
“Einstein was doubly wrong … not only does God definitely play dice, but He sometimes confuses us by throwing them where they can’t be seen.”, Stephen Hawking
“‘The probability of winning a battle has no place in our theory because it does not belong to any [random experiment]. Probability cannot be applied to this problem any more than the physical concept of work can be applied to the ’work’ done by an actor reciting his part.”, Richard Von Mises, 1928 (paraphrased)
“I am unable to see why ‘objectivity’ requires us to interpret every probability as a frequency in some random experiment; particularly when in most problems probabilities are frequencies only in an imaginary universe invented just for the purpose of allowing a frequency interpretation.”, E.T. Jaynes, 1976
Before we show how to use randomness in algorithms, let us do a quick review of some basic notions in probability theory. This is not meant to replace a course on probability theory, and if you have not seen this material before, I highly recommend you look at additional resources to get up to speed. Fortunately, we will not need many of the advanced notions of probability theory, but, as we will see, even the so-called “simple” setting of tossing  coins can lead to very subtle and interesting issues.
This chapter contains an overview of the basics of probability theory, as needed for understanding randomized computation. The main topics covered are the notions of:
1. A sample space, which for us will almost always consist of the set of all possible outcomes of the experiment of tossing a finite number of independent coins.
1. An event, which is simply a subset of the sample space, with the probability of the event happening being the fraction of outcomes that are in this subset.
1. A random variable, which is a way to assign some number or statistic to an outcome of the sample space.
1. The notion of conditioning, which corresponds to how the value of a random variable (or the probability of an event) changes if we restrict attention to outcomes for which the value of another variable is known (or for which some other event has happened). Random variables and events that have no impact on one another are called independent.
1. Expectation, which is the average of a random variable, and concentration bounds which quantify the probability that a random variable can “stray too far” from its expected value.
These concepts are at once both basic and subtle. While we will not need many “fancy” topics covered in statistics courses, including special distributions (e.g., gemoetric, Poisson, exponential, Gaussian, etc.), nor topics such as hypothesis testing or regression, this doesn’t mean that the probability we use is “trivial”. The human brain has not evolved to do probabilistic reasoning very well, and notions such as conditioning and independence can be quite subtle and confusing even in the basic setting of tossing a random coin. However, this is all the more reason that studying these notions in this basic setting is useful not just for following this book, but also as a strong foundation for “fancier topics”.
[bookmark: random-coins]Random coins
The nature of randomness and probability is a topic of great philosophical, scientific and mathematical depth. Is there actual randomness in the world, or does it proceed in a deterministic clockwork fashion from some initial conditions set at the beginning of time? Does probability refer to our uncertainty of beliefs, or to the frequency of occurrences in repeated experiments? How can we define probability over infinite sets?
These are all important questions that have been studied and debated by scientists, mathematicians, statisticians and philosophers. Fortunately, we will not need to deal directly with these questions here. We will be mostly interested in the setting of tossing  random, unbiased and independent coins. Below we define the basic probabilistic objects of events and random variables when restricted to this setting. These can be defined for much more general probabilistic experiments or sample spaces, and later on we will briefly discuss how this can be done. However, the -coin case is sufficient for almost everything we’ll need in this course.
If instead of “heads” and “tails” we encode the sides of each coin by “zero” and “one”, we can encode the result of tossing  coins as a string in . Each particular outcome  is obtained with probability . For example, if we toss three coins, then we obtain each of the 8 outcomes  with probability  (see also coinexperimentfig). We can describe the experiment of tossing  coins as choosing a string  uniformly at random from , and hence we’ll use the shorthand  for  that is chosen according to this experiment.
[bookmark: coinexperimentfig][image: ../figure/coinexperiment.png]
The probabilistic experiment of tossing three coins corresponds to making  choices, each with equal probability. In this example, the blue set corresponds to the event  where the first coin toss is equal to , and the pink set corresponds to the event  where the second coin toss is equal to  (with their intersection having a purplish color). As we can see, each of these events contains  elements (out of  total) and so has probability . The intersection of  and  contains two elements, and so the probability that both of these events occur is .
An event is simply a subset  of . The probability of , denoted by  (or  for short, when the sample space is understood from the context), is the probability that an  chosen uniformly at random will be contained in . Note that this is the same as  (where  as usual denotes the number of elements in the set ). For example, the probability that  has an even number of ones is  where . In the case , , and hence  (see eventhreecoinsfig). It turns out this is true for every :
[bookmark: eventhreecoinsfig][image: ../figure/even3coins.png]
The event that if we toss three coins  then the sum of the ’s is even has probability  since it corresponds to exactly  out of the  possible strings of length .
[bookmark: evenprob]
For every ,

[bookmark: section-1]
To test your intuition on probability, try to stop here and prove the lemma on your own.
We prove the lemma by induction on . For the case  it is clear since  is even and  is odd, and hence the probability that  is even is . Let . We assume by induction that the lemma is true for  and we will prove it for . We split the set  into four disjoint sets , where for ,  is defined as the set of  such that  has even number of ones and  and similarly  is the set of  such that  has odd number of ones and . Since  is obtained by simply extending -length string with even number of ones by the digit , the size of  is simply the number of such -length strings which by the induction hypothesis is . The same reasoning applies for , , and . Hence each one of the four sets  is of size . Since  has an even number of ones if and only if  (i.e., either the first  coordinates sum up to an even number and the final coordinate is  or the first  coordinates sum up to an odd number and the final coordinate is ), we get that the probability that  satisfies this property is

using the fact that  and  are disjoint and hence .
We can also use the intersection () and union () operators to talk about the probability of both event  and event  happening, or the probability of event  or event  happening. For example, the probability  that  has an even number of ones and  is the same as  where  and . This probability is equal to  for . (It is a great exercise for you to pause here and verify that you understand why this is the case.)
Because intersection corresponds to considering the logical AND of the conditions that two events happen, while union corresponds to considering the logical OR, we will sometimes use the  and  operators instead of  and , and so write this probability  defined above also as

If  is an event, then  corresponds to the event that  does not happen. Since , we get that

This makes sense: since  happens if and only if  does not happen, the probability of  should be one minus the probability of .
While the above definition might seem very simple and almost trivial, the human mind seems not to have evolved for probabilistic reasoning, and it is surprising how often people can get even the simplest settings of probability wrong. One way to make sure you don’t get confused when trying to calculate probability statements is to always ask yourself the following two questions: (1) Do I understand what is the sample space that this probability is taken over?, and (2) Do I understand what is the definition of the event that we are analyzing?.
For example, suppose that I were to randomize seating in my course, and then it turned out that students sitting in row 7 performed better on the final: how surprising should we find this? If we started out with the hypothesis that there is something special about the number 7 and chose it ahead of time, then the event that we are discussing is the event  that students sitting in number 7 had better performance on the final, and we might find it surprising. However, if we first looked at the results and then chose the row whose average performance is best, then the event we are discussing is the event  that there exists some row where the performance is higher than the overall average.  is a superset of , and its probability (even if there is no correlation between sitting and performance) can be quite significant.
[bookmark: random-variables]Random variables
Events correspond to Yes/No questions, but often we want to analyze finer questions. For example, if we make a bet at the roulette wheel, we don’t want to just analyze whether we won or lost, but also how much we’ve gained. A (real valued) random variable is simply a way to associate a number with the result of a probabilistic experiment. Formally, a random variable is a function  that maps every outcome  to an element . For example, the function  that maps  to the sum of its coordinates (i.e., to ) is a random variable.
The expectation of a random variable , denoted by , is the average value that this number takes, taken over all draws from the probabilistic experiment. In other words, the expectation of  is defined as follows:

If  and  are random variables, then we can define  as simply the random variable that maps a point  to . One basic and very useful property of the expectation is that it is linear:
[bookmark: linearityexp]
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Similarly,  for every .
Let  be the random variable that maps  to . Prove that .
We can solve this using the linearity of expectation. We can define random variables  such that . Since each  equals  with probability  and  with probability , . Since , by the linearity of expectation

[bookmark: section-3]
If you have not seen discrete probability before, please go over this argument again until you are sure you follow it; it is a prototypical simple example of the type of reasoning we will employ again and again in this course.
If  is an event, then  is the random variable such that  equals  if , and  otherwise. Note that  (can you see why?). Using this and the linearity of expectation, we can show one of the most useful bounds in probability theory:
[bookmark: unionbound]
For every two events , 
[bookmark: section-4]
Before looking at the proof, try to see why the union bound makes intuitive sense. We can also prove it directly from the definition of probabilities and the cardinality of sets, together with the equation . Can you see why the latter equation is true? (See also unionboundfig.)
[bookmark: section-5]
For every , the variable . Hence, .
The way we often use this in theoretical computer science is to argue that, for example, if there is a list of 100 bad events that can happen, and each one of them happens with probability at most , then with probability at least , no bad event happens.
[bookmark: unionboundfig][image: ../figure/unionbound.png]
The union bound tells us that the probability of  or  happening is at most the sum of the individual probabilities. We can see it by noting that for every two sets  (with equality only if  and  have no intersection).
[bookmark: distributions-over-strings]Distributions over strings
While most of the time we think of random variables as having as output a real number, we sometimes consider random variables whose output is a string. That is, we can think of a map  and consider the “random variable”  such that for every , the probability that  outputs  is equal to . To avoid confusion, we will typically refer to such string-valued random variables as distributions over strings. So, a distribution  over strings  can be thought of as a finite collection of strings  and probabilities  (which are non-negative numbers summing up to one), so that .
Two distributions  and  are identical if they assign the same probability to every string. For example, consider the following two functions . For every , we define  and  where  is the XOR operations. Although these are two different functions, they induce the same distribution over  when invoked on a uniform input. The distribution  for  is of course the uniform distribution over . On the other hand  is simply the map , , ,  which is a permutation of .
[bookmark: generalsamplespaces]More general sample spaces
While throughout most of this book we assume that the underlying probabilistic experiment corresponds to tossing  independent coins, all the claims we make easily generalize to sampling  from a more general finite or countable set  (and not-so-easily generalizes to uncountable sets  as well). A probability distribution over a finite set  is simply a function  such that . We think of this as the experiment where we obtain every  with probability , and sometimes denote this as . In particular, tossing  random coins corresponds to the probability distribution  defined as  for every . An event  is a subset of , and the probability of , which we denote by , is . A random variable is a function , where the probability that  is equal to .
[bookmark: correlations-and-independence]Correlations and independence
One of the most delicate but important concepts in probability is the notion of independence (and the opposing notion of correlations). Subtle correlations are often behind surprises and errors in probability and statistical analysis, and several mistaken predictions have been blamed on miscalculating the correlations between, say, housing prices in Florida and Arizona, or voter preferences in Ohio and Michigan. See also Joe Blitzstein’s aptly named talk “Conditioning is the Soul of Statistics”. (Another thorny issue is of course the difference between correlation and causation. Luckily, this is another point we don’t need to worry about in our clean setting of tossing  coins.)
Two events  and  are independent if the fact that  happens makes  neither more nor less likely to happen. For example, if we think of the experiment of tossing  random coins , and we let  be the event that  and  the event that , then if  happens it is more likely that  happens, and hence these events are not independent. On the other hand, if we let  be the event that , then because the second coin toss is not affected by the result of the first one, the events  and  are independent.
The formal definition is that events  and  are independent if . If  then we say that  and  are positively correlated, while if  then we say that  and  are negatively correlated (see independencefig).
[bookmark: independencefig][image: ../figure/independence.png]
Two events  and  are independent if . In the two figures above, the empty  square is the sample space, and  and  are two events in this sample space. In the left figure,  and  are independent, while in the right figure they are negatively correlated, since  is less likely to occur if we condition on  (and vice versa). Mathematically, one can see this by noticing that in the left figure the areas of  and  respectively are  and , and so their probabilities are  and  respectively, while the area of  is  which corresponds to the probability . In the right figure, the area of the triangle  is  which corresponds to a probability of , but the area of  is  for some . This means that the probability of  is , or in other words .
If we consider the above examples on the experiment of choosing  then we can see that

but

and hence, as we already observed, the events  and  are not independent and in fact are positively correlated. On the other hand,  and hence the events  and  are indeed independent.
[bookmark: disjoint]
People sometimes confuse the notion of disjointness and independence, but these are actually quite different. Two events  and  are disjoint if , which means that if  happens then  definitely does not happen. They are independent if  which means that knowing that  happens gives us no information about whether  happened or not. If  and  have non-zero probability, then being disjoint implies that they are not independent, since in particular it means that they are negatively correlated.
Conditional probability: If  and  are events, and  happens with non-zero probability then we define the probability that  happens conditioned on  to be . This corresponds to calculating the probability that  happens if we already know that  happened. Note that  and  are independent if and only if .
More than two events: We can generalize this definition to more than two events. We say that events  are mutually independent if knowing that any set of them occurred or didn’t occur does not change the probability that an event outside the set occurs. Formally, the condition is that for every subset ,

For example, if , then the events ,  and  are mutually independent. On the other hand, the events ,  and  are not mutually independent, even though every pair of these events is independent (can you see why? see also independencecoinsfig).
[bookmark: independencecoinsfig][image: ../figure/independencecoins.png]
Consider the sample space  and the events  corresponding to : , : , : , :  and : . We can see that  and  are independent,  is positively correlated with  and positively correlated with , the three events  are mutually independent, and while every pair out of  is independent, the three events  are not mutually independent since their intersection has probability  instead of .
[bookmark: independent-random-variables]Independent random variables
We say that two random variables  and  are independent if for every , the events  and  are independent. (We use  as shorthand for .) In other words,  and  are independent if  for every . For example, if two random variables depend on the result of tossing different coins then they are independent:
[bookmark: indcoins]
Suppose that  and  are disjoint subsets of  and let  be random variables such that  and  for some functions  and . Then  and  are independent.
[bookmark: section-6]
The notation in the lemma’s statement is a bit cumbersome, but at the end of the day, it simply says that if  and  are random variables that depend on two disjoint sets  and  of coins (for example,  might be the sum of the first  coins, and  might be the largest consecutive stretch of zeroes in the second  coins), then they are independent.
[bookmark: section-7]
Let , and let  and . Since  and  are disjoint, we can reorder the indices so that  and  without affecting any of the probabilities. Hence we can write  where . Another way to write this using string concatenation is that , and hence , which means that

If  and  are independent random variables then (letting  denote the sets of all numbers that have positive probability of being the output of  and , respectively):

where the first equality () follows from the independence of  and , the second equality () follows by “opening the parentheses” of the right-hand side, and the third equality () follows from the definition of expectation. (This is not an “if and only if”; see noindnocorex.)
Another useful fact is that if  and  are independent random variables, then so are  and  for all functions . This is intuitively true since learning  can only provide us with less information than does learning  itself. Hence, if learning  does not teach us anything about  (and so also about ) then neither will learning . Indeed, to prove this we can write for every :

[bookmark: Xe12464b2839c49cd89df3169e6f98a6854350bf]Collections of independent random variables
We can extend the notions of independence to more than two random variables: we say that the random variables  are mutually independent if for every ,

And similarly, we have that
[bookmark: expprod]
If  are mutually independent then

[bookmark: indeplem]
If  are mutually independent, and  are defined as  for some functions , then  are mutually independent as well.
[bookmark: section-8]
We leave proving expprod and indeplem as expprodex and indeplemex. It is a good idea for you stop now and do these exercises to make sure you are comfortable with the notion of independence, as we will use it heavily later on in this course.
[bookmark: concentration-and-tail-bounds]Concentration and tail bounds
The name “expectation” is somewhat misleading. For example, suppose that you and I place a bet on the outcome of 10 coin tosses, where if they all come out to be ’s then I pay you 100,000 dollars and otherwise you pay me 10 dollars. If we let  be the random variable denoting your gain, then we see that

But we don’t really “expect” the result of this experiment to be for you to gain 90 dollars. Rather, 99.9% of the time you will pay me 10 dollars, and you will hit the jackpot 0.1% of the times.
However, if we repeat this experiment again and again (with fresh and hence independent coins), then in the long run we do expect your average earning to be close to 90 dollars, which is the reason why casinos can make money in a predictable way even though every individual bet is random. For example, if we toss  independent and unbiased coins, then as  grows, the number of coins that come up ones will be more and more concentrated around  according to the famous “bell curve” (see bellfig).
[bookmark: bellfig][image: ../figure/binomial.png]
The probabilities that we obtain a particular sum when we toss  coins converge quickly to the Gaussian/normal distribution.
Much of probability theory is concerned with so called concentration or tail bounds, which are upper bounds on the probability that a random variable  deviates too much from its expectation. The first and simplest one of them is Markov’s inequality:
[bookmark: markovthm]
If  is a non-negative random variable then for every , .
[bookmark: section-9]
Markov’s Inequality is actually a very natural statement (see also markovfig). For example, if you know that the average (not the median!) household income in the US is 70,000 dollars, then in particular you can deduce that at most 25 percent of households make more than 280,000 dollars, since otherwise, even if the remaining 75 percent had zero income, the top 25 percent alone would cause the average income to be larger than 70,000 dollars. From this example you can already see that in many situations, Markov’s inequality will not be tight and the probability of deviating from expectation will be much smaller: see the Chebyshev and Chernoff inequalities below.
[bookmark: section-10]
Let  and define . That is,  if  and  otherwise. Note that by definition, for every , . We need to show . But this follows since .
[bookmark: markovfig][image: ../figure/markovineq.png]
Markov’s Inequality tells us that a non-negative random variable  cannot be much larger than its expectation, with high probability. For example, if the expectation of  is , then the probability that  must be at most , as otherwise just the contribution from this part of the sample space will be too large.
The averaging principle. While the expectation of a random variable  is hardly always the “typical value”, we can show that  is guaranteed to achieve a value that is at least its expectation with positive probability. For example, if the average grade in an exam is  points, at least one student got a grade  or more on the exam. This is known as the averaging principle, and despite its simplicity it is surprisingly useful.
[bookmark: averagingprinciplerem]
Let  be a random variable, then .
Suppose towards the sake of contradiction that . Then the random variable  is always positive. By linearity of expectation . Yet by Markov, a non-negative random variable  with  must equal  with probability , since the probability that  is at most  for every . Hence we get a contradiction to the assumption that  is always positive.
[bookmark: chebyshevs-inequality]Chebyshev’s Inequality
Markov’s inequality says that a (non-negative) random variable  can’t go too crazy and be, say, a million times its expectation, with significant probability. But ideally we would like to say that with high probability,  should be very close to its expectation, e.g., in the range  where . In such a case we say that  is concentrated, and hence its expectation (i.e., mean) will be close to its median and other ways of measuring ’s “typical value”. Chebyshev’s inequality can be thought of as saying that  is concentrated if it has a small standard deviation.
A standard way to measure the deviation of a random variable from its expectation is by using its standard deviation. For a random variable , we define the variance of  as  where ; i.e., the variance is the average squared distance of  from its expectation. The standard deviation of  is defined as . (This is well-defined since the variance, being an average of a square, is always a non-negative number.)
Using Chebyshev’s inequality, we can control the probability that a random variable is too many standard deviations away from its expectation.
[bookmark: chebychevthm]
Suppose that  and . Then for every , .
[bookmark: section-11]
The proof follows from Markov’s inequality. We define the random variable . Then , and hence by Markov the probability that  is at most . But clearly  if and only if .
One example of how to use Chebyshev’s inequality is the setting when  where ’s are independent and identically distributed (i.i.d for short) variables with values in  where each has expectation . Since , we would like to say that  is very likely to be in, say, the interval . Using Markov’s inequality directly will not help us, since it will only tell us that  is very likely to be at most  (which we already knew, since it always lies between  and ). However, since  are independent,

(We leave showing this to the reader as varianceex.)
For every random variable  in ,  (if the variable is always in , it can’t be more than  away from its expectation), and hence varianceeq implies that  and hence . For large , , and in particular if , we can use Chebyshev’s inequality to bound the probability that  is not in  by .
[bookmark: the-chernoff-bound]The Chernoff bound
Chebyshev’s inequality already shows a connection between independence and concentration, but in many cases we can hope for a quantitatively much stronger result. If, as in the example above,  where the ’s are bounded i.i.d random variables of mean , then as  grows, the distribution of  would be roughly the normal or Gaussian distribution that is, distributed according to the bell curve (see bellfig and empiricalbellfig). This distribution has the property of being very concentrated in the sense that the probability of deviating  standard deviations from the mean is not merely  as is guaranteed by Chebyshev, but rather is roughly . Specifically, for a normal random variable  of expectation  and standard deviation , the probability that  is at most . That is, we have an exponential decay of the probability of deviation.
[bookmark: empiricalbellfig][image: ../figure/sixsigma.jpg]
In the normal distribution or the bell curve, the probability of deviating  standard deviations from the expectation shrinks exponentially in , and specifically with probability at least , a random variable  of expectation  and standard deviation  satisfies . This figure gives more precise bounds for . (Image credit:Imran Baghirov)
The following extremely useful theorem shows that such exponential decay occurs every time we have a sum of independent and bounded variables. This theorem is known under many names in different communities, though it is mostly called the Chernoff bound in the computer science literature:
[bookmark: chernoffthm]
If  are i.i.d random variables such that  and  for every , then for every 

We omit the proof, which appears in many texts, and uses Markov’s inequality on i.i.d random variables  that are of the form  for some carefully chosen parameter . See chernoffstirlingex for a proof of the simple (but highly useful and representative) case where each  is  valued and . (See also poorchernoff for a generalization.)
Since  is roughly  (and in particular larger than ),
eqchernoff would still be true if we replaced its right-hand side with . For , the equation will still be true if we replaced the right-hand side with the simpler . Hence we will sometimes use the Chernoff bound as stating that for  and  as above,  then

[bookmark: learningerm]Application: Supervised learning and empirical risk minimization
Here is a nice application of the Chernoff bound. Consider the task of supervised learning. You are given a set  of  samples of the form  drawn from some unknown distribution  over pairs . For simplicity we will assume that  and . (We use here the concept of general distribution over the finite set  as discussed in generalsamplespaces.) The goal is to find a classifier  that will minimize the test error which is the probability  that  where  is drawn from the distribution . That is, .
One way to find such a classifier is to consider a collection  of potential classifiers and look at the classifier  in  that does best on the training set . The classifier  is known as the empirical risk minimizer (see also convexnotesec) . The Chernoff bound can be used to show that as long as the number  of samples is sufficiently larger than the logarithm of , the test error  will be close to its training error , which is defined as the fraction of pairs  that it fails to classify. (Equivalently, .)
Let  be any distribution over pairs  and  be any set of functions mapping  to . Then for every , if  and  is a set of  samples that are drawn independently from  then

where the probability is taken over the choice of the set of samples .
In particular if  and  then with probability at least , the classifier  that minimizes that empirical test error  satisfies , and hence its test error is at most  worse than its training error.
[bookmark: section-12]
The idea is to combine the Chernoff bound with the union bound. Let . We first use the Chernoff bound to show that for every fixed , if we choose  at random then the probability that  will be smaller than . We can then use the union bound over all the  members of  to show that this will be the case for every .
Set  and so . We start by making the following claim.
CLAIM: For every , the probability over  that  is smaller than .
We prove the claim using the Chernoff bound. Specifically, for every such , let us define a collection of random variables  as follows:

Since the samples  are drawn independently from the same distribution , the random variables  are independently and identically distributed. Moreover, for every , . Hence by the Chernoff bound (see eqchernoffsimpler), the probability that  is at most  (using the fact that ). Since , this completes the proof of the claim.
Given the claim, the theorem follows from the union bound. Indeed, for every , define the “bad event”  to be the event (over the choice of ) that . By the claim , and hence by the union bound the probability that the union of  for all  happens is smaller than . If for every ,  does not happen, it means that for every , , and so the probability of the latter event is larger than  which is what we wanted to prove.
· A basic probabilistic experiment corresponds to tossing  coins or choosing  uniformly at random from .
· Random variables assign a real number to every result of a coin toss. The expectation of a random variable  is its average value.
· There are several concentration results, also known as tail bounds showing that under certain conditions, random variables deviate significantly from their expectation only with small probability.
[bookmark: exercises]Exercises
[bookmark: section-13]
Suppose that we toss three independent fair coins . What is the probability that the XOR of ,, and  is equal to ? What is the probability that the AND of these three values is equal to ? Are these two events independent?
[bookmark: section-14]
Give an example of random variables  such that .
[bookmark: noindnocorex]
Give an example of random variables  such that  and  are not independent but .
Let  be an odd number, and let  be the random variable defined as follows: for every ,  if  and  otherwise. Prove that .
1. Give an example for a random variable  such that ’s standard deviation is equal to .
1. Give an example for a random variable  such that ’s standard deviation is not equal to .
[bookmark: expprodex]
Prove expprod.
[bookmark: indeplemex]
Prove indeplem.
[bookmark: varianceex]
Prove that if  are independent random variables then .
[bookmark: entropyex]
Recall the definition of a distribution  over some finite set . Shannon defined the entropy of a distribution , denoted by , to be . The idea is that if  is a distribution of entropy , then encoding members of  will require  bits, in an amortized sense. In this exercise we justify this definition. Let  be such that .
1. Prove that for every one-to-one function , .
2. Prove that for every , there is some  and a one-to-one function , such that , where  denotes the experiments of choosing  each independently from  using the distribution .
[bookmark: entropybinomex]
Let .[footnoteRef:90] Prove that for every  and , if  is large enough then[footnoteRef:91] [90:  While you don’t need this to solve this exercise, this is the function that maps  to the entropy (as defined in entropyex) of the -biased coin distribution over , which is the function  s.t.  and .]  [91:  Hint: Use Stirling’s formula for approximating the factorial function.] 


where  is the binomial coefficient  which is equal to the number of -size subsets of .
1. Prove that .

1. Use this and entropybinomex to prove (an approximate version of) the Chernoff bound for the case that  are i.i.d. random variables over  each equaling  and  with probability . That is, prove that for every , and  as above, .
chernoffstirlingex establishes the Chernoff bound for the case that  are i.i.d variables over  with expectation . In this exercise we use a slightly different method (bounding the moments of the random variables) to establish a version of Chernoff where the random variables range over  and their expectation is some number  that may be different than . Let  be i.i.d random variables with  and . Define .
1. Prove that for every , if there exists one  such that  is odd then .

1. Prove that for every , .[footnoteRef:93]
 [93:  Hint: Bound the number of tuples  such that every  is even and  using the Binomial coefficient and the fact that in any such tuple there are at most  distinct indices.] 

1. Prove that for every , .[footnoteRef:94] [94:  Hint: Set  and then show that if the event  happens then the random variable  is a factor of  larger than its expectation.] 

Suppose that a country has 300,000,000 citizens, 52 percent of which prefer the color “green” and 48 percent of which prefer the color “orange”. Suppose we sample  random citizens and ask them their favorite color (assume they will answer truthfully). What is the smallest value  among the following choices so that the probability that the majority of the sample answers “green” is at most ?
1. 1,000
1. 10,000
1. 100,000
1. 1,000,000
[bookmark: exid]
Would the answer to samplingex change if the country had 300,000,000,000 citizens?
Under the same assumptions as samplingex, what is the smallest value  among the following choices so that the probability that the majority of the sample answers “green” is at most ?
1. 1,000
1. 10,000
1. 100,000
1. 1,000,000
1. It is impossible to get such low probability since there are fewer than  citizens.
[bookmark: bibliographical-notes]Bibliographical notes
There are many sources for more information on discrete probability, including the texts referenced in notesmathchap. One particularly recommended source for probability is Harvard’s STAT 110 class, whose lectures are available on youtube and whose book is available online.
The version of the Chernoff bound that we stated in chernoffthm is sometimes known as Hoeffding’s Inequality. Other variants of the Chernoff bound are known as well, but all of them are equally good for the applications of this book.
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