NP, NP completeness, and the Cook-Levin Theorem

“In this paper we give theorems that suggest, but do not imply, that these problems, as well as many others, will remain intractable perpetually”, Richard Karp, 1972

“Sad to say, but it will be many more years, if ever before we really understand the Mystical Power of Twoness... 2-SAT is easy, 3-SAT is hard, 2-dimensional matching is easy, 3-dimensional matching is hard. Why? oh, Why?” Eugene Lawler

So far we have shown that 3SAT is no harder than Quadratic Equations, Independent Set, Maximum Cut, and Longest Path. But to show that these problems are computationally equivalent we need to give reductions in the other direction, reducing each one of these problems to 3SAT as well. It turns out we can reduce all three problems to 3SAT in one fell swoop.

In fact, this result extends far beyond these particular problems. All of the problems we discussed in Chapter 14, and a great many other problems, share the same commonality: they are all search problems, where the goal is to decide, given an instance \(x \), whether there exists a solution \(y \) that satisfies some condition that can be verified in polynomial time. For example, in 3SAT, the instance is a formula and the solution is an assignment to the variable; in Max-Cut the instance is a graph and the solution is a cut in the graph; and so on and so forth. It turns out that every such search problem can be reduced to 3SAT.

This chapter: A non-mathy overview

In this chapter we will see the definition of the complexity class NP- one of the most important definitions in this book, and the Cook-Levin Theorem- one of the most important theorems in it. Intuitively, the class NP corresponds to the class of problems where it is easy to verify a solution (i.e., verification can be done by a polynomial-time algorithm). For example, finding a satisfying assignment to a 2SAT or
A 3SAT formula is such a problem, since if we are given an assignment to the variables a 2SAT or 3SAT formula then we can efficiently verify that it satisfies all constraints. More precisely, \(\mathsf{NP} \) is the class of decision problems (i.e., Boolean functions or languages) corresponding to determining the existence of such a solution, though we will see in Chapter 16 that the decision and search problems are closely related.

As the examples of 2SAT and 3SAT show, there are some computational problems (i.e., functions) in \(\mathsf{NP} \) for which we have a polynomial-time algorithm, and some for which no such algorithm is known. It is an outstanding open question whether or not all functions in \(\mathsf{NP} \) have a polynomial-time algorithm, or in other words (to use just a little bit of math) whether or not \(\mathsf{P} = \mathsf{NP} \). In this chapter we will see that there are some functions in \(\mathsf{NP} \) that are in a precise sense “hardest in all of \(\mathsf{NP} \)” in the sense that if even one of these functions has a polynomial-time algorithm then all functions in \(\mathsf{NP} \) have such an algorithm. Such functions are known as \(\mathsf{NP} \) complete. The Cook-Levin Theorem states that 3SAT is \(\mathsf{NP} \) complete. Using a complex web of polynomial-time reductions, researchers have derived from the Cook-Levin theorem the \(\mathsf{NP} \)-completeness of thousands of computational problems from all areas of mathematics, natural and social sciences, engineering, and more. These results provide strong evidence that all of these problems cannot be solved in the worst-case by polynomial-time algorithm.

Figure 15.1: Overview of the results of this chapter. We define \(\mathsf{NP} \) to contain all decision problems for which a solution can be efficiently verified. The main result of this chapter is the Cook Levin Theorem (Theorem 15.6) which states that 3SAT has a polynomial-time algorithm if and only if every problem in \(\mathsf{NP} \) has a polynomial-time algorithm. Another way to state this theorem is that 3SAT is \(\mathsf{NP} \) complete. We will prove the Cook-Levin theorem by defining the two intermediate problems NANDSAT and 3NAND, proving that NANDSAT is \(\mathsf{NP} \) complete, and then proving that NANDSAT \(\leq_p \) 3NAND \(\leq_p \) 3SAT.
15.1 THE CLASS NP

To make the above precise, we will make the following mathematical definition. We define the class NP to contain all Boolean functions that correspond to a search problem of the form above. That is, a Boolean function F is in NP if F has the form that on input a string x, $F(x) = 1$ if and only if there exists a “solution” string w such that the pair (x, w) satisfies some polynomial-time checkable condition. Formally, NP is defined as follows:

Definition 15.1 — NP. We say that $F : \{0, 1\}^* \rightarrow \{0, 1\}$ is in NP if there exists some integer $a > 0$ and $V : \{0, 1\}^* \rightarrow \{0, 1\}$ such that $V \in P$ and for every $x \in \{0, 1\}^n$,

$$F(x) = 1 \iff \exists w \in \{0, 1\}^a \text{ s.t. } V(xw) = 1.$$ \hspace{1cm} (15.1)

In other words, for F to be in NP, there needs to exist some polynomial-time computable verification function V, such that if $F(x) = 1$ then there must exist w (of length polynomial in $|x|$) such that $V(xw) = 1$, and if $F(x) = 0$ then for every such w, $V(xw) = 0$. Since the existence of this string w certifies that $F(x) = 1$, w is often referred to as a certificate, witness, or proof that $F(x) = 1$.

See also Fig. 15.2 for an illustration of Definition 15.1. The name NP stands for “non-deterministic polynomial time” and is used for historical reasons; see the bibliographical notes. The string w in (15.1) is sometimes known as a solution, certificate, or witness for the instance x.

Solved Exercise 15.1 — Alternative definition of NP. Show that the condition that $|w| = |x|^a$ in Definition 15.1 can be replaced by the condition that $|w| \leq p(|x|)$ for some polynomial p. That is, prove that for every $F : \{0, 1\}^* \rightarrow \{0, 1\}$, $F \in \text{NP}$ if and only if there is a polynomial-time Turing machine V and a polynomial $p : \mathbb{N} \rightarrow \mathbb{N}$ such that for every $x \in \{0, 1\}^*$ $F(x) = 1$ if and only if there exists $w \in \{0, 1\}^*$ with $|w| \leq p(|x|)$ such that $V(x, w) = 1$.

Solution:

The “only if” direction (namely that if $F \in \text{NP}$ then there is an algorithm V and a polynomial p as above) follows immediately from Definition 15.1 by letting $p(n) = n^a$. For the “if” direction, the idea is that if a string w is of size at most $p(n)$ for degree d polynomial p, then there is some n_0 such that for all $n > n_0$, $|w| < n^{d+1}$. Hence we can encode w by a string of exactly length
by padding it with 1 and an appropriate number of zeroes. Hence if there is an algorithm V and polynomial p as above, then we can define an algorithm V' that does the following on input x, w' with $|x| = n$ and $|w'| = n^n$:

- If $n \leq n_0$, then $V'(x, w')$ ignores w' and enumerates over all w of length at most $p(n)$ and outputs 1 if there exists w such that $V(x, w) = 1$. (Since $n < n_0$, this only takes a constant number of steps.)

- If $n > n_0$, then $V'(x, w')$ "strips out" the padding by dropping all the rightmost zeroes from w until it reaches out the first 1 (which it drops as well) and obtains a string w. If $|w| \leq p(n)$ then V' outputs $V(x, w)$.

Since V runs in polynomial time, V' runs in polynomial time as well, and by definition for every x, there exists $w' \in \{0, 1\}^{|x|^a}$ such that $V'(xw') = 1$ if and only if there exists $w \in \{0, 1\}^*$ with $|w| \leq p(|x|)$ such that $V(xw) = 1$.

The definition of NP means that for every $F \in NP$ and string $x \in \{0, 1\}^*$, $F(x) = 1$ if and only if there is a short and efficiently verifiable proof of this fact. That is, we can think of the function V in Definition 15.1 as a verifier algorithm, similar to what we’ve seen in Section 11.1. The verifier checks whether a given string $w \in \{0, 1\}^*$ is a valid proof for the statement \(F(x) = 1\). Essentially all proof systems considered in mathematics involve line-by-line checks that can be carried out in polynomial time. Thus the heart of NP is asking for statements that have short (i.e., polynomial in the size of the statements) proofs. Indeed, as we will see in Chapter 16, Kurt Gödel phrased the question of whether $NP = P$ as asking whether “the mental work of a mathematician [in proving theorems] could be completely replaced by a machine”.

Remark 15.2 — NP not (necessarily) closed under complement. Definition 15.1 is asymmetric in the sense that there is a difference between an output of 1 and an output of 0. You should make sure you understand why this definition does not guarantee that if $F \in NP$ then the function $1 - F$ (i.e., the map $x \mapsto 1 - F(x)$) is in NP as well.

In fact, it is believed that there do exist functions F such that $F \in NP$ but $1 - F \notin NP$. For example, as shown below, $3SAT \in NP$, but the function $3SAT$ that on input a 3CNF formula φ outputs 1 if and only if φ is not satisfiable is not known (nor believed) to be in NP.

\[n^{d+1}\]
This is in contrast to the class P which does satisfy that if $F \in \text{P}$ then $1 - F$ is in P as well.

15.1.1 Examples of functions in NP

We now present some examples of functions that are in the class NP. We start with the canonical example of the 3SAT function.

- **Example 15.3 —** $3\text{SAT} \in \text{NP}$. 3SAT is in NP since for every ℓ-variable formula φ, $3\text{SAT}(\varphi) = 1$ if and only if there exists a satisfying assignment $x \in \{0, 1\}^\ell$ such that $\varphi(x) = 1$, and we can check this condition in polynomial time.

 The above reasoning explains why 3SAT is in NP, but since this is our first example, we will now belabor the point and expand out in full formality the precise representation of the witness w and the algorithm V that demonstrate that 3SAT is in NP. Since demonstrating that functions are in NP is fairly straightforward, in future cases we will not use as much detail, and the reader can also feel free to skip the rest of this example.

 Using Solved Exercise 15.1, it is OK if witness is of size at most polynomial in the input length n, rather than of precisely size n^a for some integer $a > 0$. Specifically, we can represent a 3CNF formula φ with k variables and m clauses as a string of length $n = O(m \log k)$, since every one of the m clauses involves three variables and their negation, and the identity of each variable can be represented using $\lceil \log_2 k \rceil$. We assume that every variable participates in some clause (as otherwise it can be ignored) and hence that $m \geq k$, which in particular means that the input length n is at least as large as m and k.

 We can represent an assignment to the k variables using a k-length string w. The following algorithm checks whether a given w satisfies the formula φ:
Algorithm 15.4 — Verifier for $3SAT$.

Input: $3CNF$ formula φ on k variables and with m clauses, string $w \in \{0, 1\}^k$

Output: 1 iff w satisfies φ

1. for $j \in [m]$ do
2. Let $\ell_1 \lor \ell_2 \lor \ell_j$ be the j-th clause of φ
3. if w violates all three literals then
4. return 0
5. end if
6. end for
7. return 1

Algorithm 15.4 takes $O(m)$ time to enumerate over all clauses, and will return 1 if and only if y satisfies all the clauses.

Here are some more examples for problems in NP. For each one of these problems we merely sketch how the witness is represented and why it is efficiently checkable, but working out the details can be a good way to get more comfortable with Definition 15.1:

- **QUADEQ** is in NP since for every ℓ-variable instance of quadratic equations E, $QUADEQ(E) = 1$ if and only if there exists an assignment $x \in \{0, 1\}^\ell$ that satisfies E. We can check the condition that x satisfies E in polynomial time by enumerating over all the equations in E, and for each such equation e, plug in the values of x and verify that e is satisfied.

- **ISET** is in NP since for every graph G and integer k, $ISET(G, k) = 1$ if and only if there exists a set S of k vertices that contains no pair of neighbors in G. We can check the condition that S is an independent set of size $\geq k$ in polynomial time by first checking that $|S| \geq k$ and then enumerating over all edges $\{u, v\}$ in G, and for each such edge verify that either $u \notin S$ or $v \notin S$.

- **LONGPATH** is in NP since for every graph G and integer k, $LONGPATH(G, k) = 1$ if and only if there exists a simple path P in G that is of length at least k. We can check the condition that P is a simple path of length k in polynomial time by checking that it has the form (v_0, v_1, \ldots, v_k) where each v_i is a vertex in G, no v_i is repeated, and for every $i \in [k]$, the edge $\{v_i, v_{i+1}\}$ is present in the graph.

- **MAXCUT** is in NP since for every graph G and integer k, $MAXCUT(G, k) = 1$ if and only if there exists a cut (S, \overline{S}) in G that cuts at least k edges. We can check that condition that (S, \overline{S}) is a cut of value at least k in polynomial time by checking that S is a
subset of G’s vertices and enumerating over all the edges $\{u, v\}$ of G, counting those edges such that $u \in S$ and $v \notin S$ or vice versa.

15.1.2 Basic facts about NP

The definition of NP is one of the most important definitions of this book, and is worth while taking the time to digest and internalize. The following solved exercises establish some basic properties of this class. As usual, I highly recommend that you try to work out the solutions yourself.

Solved Exercise 15.2 — Verifying is no harder than solving. Prove that $\text{P} \subseteq \text{NP}$.

Solution:

Suppose that $F \in \text{P}$. Define the following function $V: V(x0^n) = 1$ iff $n = |x|$ and $F(x) = 1$. (V outputs 0 on all other inputs.) Since $F \in \text{P}$ we can clearly compute V in polynomial time as well.

Let $x \in \{0, 1\}^n$ be some string. If $F(x) = 1$ then $V(x0^n) = 1$. On the other hand, if $F(x) = 0$ then for every $w \in \{0, 1\}^n, V(xw) = 0$. Therefore, setting $a = 1$ (i.e. $w \in \{0, 1\}^{n+1}$), we see that V satisfies (15.1), and establishes that $F \in \text{NP}$.

Remark 15.5 — NP does not mean non-polynomial!.

People sometimes think that NP stands for “non-polynomial time”. As Solved Exercise 15.2 shows, this is far from the truth, and in fact every polynomial-time computable function is in NP as well.

If F is in NP it certainly does not mean that F is hard to compute (though it does not, as far as we know, necessarily mean that it’s easy to compute either). Rather, it means that F is easy to verify, in the technical sense of Definition 15.1.

Solved Exercise 15.3 — NP is in exponential time. Prove that $\text{NP} \subseteq \text{EXP}$.

Solution:

Suppose that $F \in \text{NP}$ and let V be the polynomial-time computable function that satisfies (15.1) and a the corresponding constant. Then given every $x \in \{0, 1\}^n$, we can check whether $F(x) = 1$ in time $\text{poly}(n) \cdot 2^n = o(2^{n+1})$ by enumerating over all the 2^n strings $w \in \{0, 1\}^n$ and checking whether $V(xw) = 1$, in which case we return 1. If $V(xw) = 0$ for every such w then we return 0. By construction, the algorithm above will run in time at
most exponential in its input length and by the definition of NP it will return \(F(x) \) for every \(x \).

\[\text{Solved Exercise 15.2 and Solved Exercise 15.3 together imply that} \]

\[P \subseteq NP \subseteq EXP. \]

The time hierarchy theorem (Theorem 13.9) implies that \(P \subseteq EXP \)
and hence at least one of the two inclusions \(P \subseteq NP \) or \(NP \subseteq EXP \)
is strict. It is believed that both of them are in fact strict inclusions.
That is, it is believed that there are functions in \(NP \) that cannot be computed in polynomial time (this is the \(P \neq NP \) conjecture) and that there are functions \(F \) in \(EXP \) for which we cannot even efficiently certify that \(F(x) = 1 \) for a given input \(x \). One function \(F \) that is believed to lie in \(EXP \setminus NP \) is the function \(3\text{SAT} \)
defined as \(3\text{SAT}(\varphi) = 1 - 3\text{SAT}(\varphi) \) for every 3CNF formula \(\varphi \). The conjecture that \(3\text{SAT} \notin NP \) is known as the “\(NP \neq \text{co-NP} \)” conjecture. It implies the \(P \neq NP \) conjecture (see Exercise 15.2).

We have previously informally equated the notion of \(F \leq_p G \) with \(F \) being “no harder than \(G \)” and in particular have seen in Solved Exercise 14.1 that if \(G \in P \) and \(F \leq_p G \), then \(F \in P \) as well. The following exercise shows that if \(F \leq_p G \) then it is also “no harder to verify” than \(G \). That is, regardless of whether or not it is in \(P \), if \(G \) has the property that solutions to it can be efficiently verified, then so does \(F \).

\[\text{Solved Exercise 15.4 — Reductions and NP. Let} \quad F, G : \{0, 1\}^* \rightarrow \{0, 1\}. \]

Show that if \(F \leq_p G \) and \(G \in NP \) then \(F \in NP \).

\[\text{Solution:} \]

Suppose that \(G \) is in \(NP \) and in particular there exists \(a \) and \(V \in P \) such that for every \(y \in \{0, 1\}^* \), \(G(y) = 1 \iff \exists w \in \{0, 1\}^a V(yw) = 1 \).
Suppose also that \(F \leq_p G \) and so in particular there is a \(n^b \)-time computable function \(R \) such that \(F(x) = G(R(x)) \) for all \(x \in \{0, 1\}^* \). Define \(V' \) to be a Turing machine that on input a pair \((x, w) \) computes \(y = R(x) \) and returns 1 if and only if \(|w| = |y|^a \) and \(V(yw) = 1 \). Then \(V' \) runs in polynomial time, and for every \(x \in \{0, 1\}^* \), \(F(x) = 1 \) iff there exists \(w \) of size \(|R(x)|^a \) which is at most polynomial in \(|x| \) such that \(V'(x, w) = 1 \), hence demonstrating that \(F \in NP \).
15.2 FROM NP TO 3SAT: THE COOK-LEVIN THEOREM

We have seen several examples of problems for which we do not know if their best algorithm is polynomial or exponential, but we can show that they are in NP. That is, we don’t know if they are easy to solve, but we do know that it is easy to verify a given solution. There are many, many, many, more examples of interesting functions we would like to compute that are easily shown to be in NP. What is quite amazing is that if we can solve 3SAT then we can solve all of them!

The following is one of the most fundamental theorems in Computer Science:

Theorem 15.6 — Cook-Levin Theorem. For every $F \in \mathbf{NP}$, $F \leq_p 3\text{SAT}$.

We will soon show the proof of Theorem 15.6, but note that it immediately implies that QUADEQ, LONGPATH, and MAXCUT all reduce to 3SAT. Combining it with the reductions we’ve seen in Chapter 14, it implies that all these problems are equivalent! For example, to reduce QUADEQ to LONGPATH, we can first reduce QUADEQ to 3SAT using Theorem 15.6 and use the reduction we’ve seen in Theorem 14.10 from 3SAT to LONGPATH. That is, since QUADEQ $\in \mathbf{NP}$, Theorem 15.6 implies that QUADEQ $\leq_p 3\text{SAT}$, and Theorem 14.10 implies that 3SAT \leq_p LONGPATH, which by the transitivity of reductions (Solved Exercise 14.2) means that QUADEQ \leq_p LONGPATH. Similarly, since LONGPATH $\in \mathbf{NP}$, we can use Theorem 15.6 and Theorem 14.4 to show that LONGPATH \leq_p 3SAT \leq_p QUADEQ, concluding that LONGPATH and QUADEQ are computationally equivalent.

There is of course nothing special about QUADEQ and LONGPATH here: by combining (15.6) with the reductions we saw, we see that just like 3SAT, every $F \in \mathbf{NP}$ reduces to LONGPATH, and the same is true for QUADEQ and MAXCUT. All these problems are in some sense “the hardest in \mathbf{NP}” since an efficient algorithm for any one of them would imply an efficient algorithm for all the problems in \mathbf{NP}. This motivates the following definition:

Definition 15.7 — NP-hardness and NP-completeness. Let $G : \{0, 1\}^* \rightarrow \{0, 1\}$. We say that G is NP hard if for every $F \in \mathbf{NP}$, $F \leq_p G$.

We say that G is NP complete if G is NP hard and $G \in \mathbf{NP}$.

The Cook-Levin Theorem (Theorem 15.6) can be rephrased as saying that 3SAT is NP hard, and since it is also in \mathbf{NP}, this means that 3SAT is NP complete. Together with the reductions of Chapter 14, Theorem 15.6 shows that despite their superficial differences, 3SAT, quadratic equations, longest path, independent set, and maximum
cut, are all \(\text{NP} \)-complete. Many thousands of additional problems have been shown to be \(\text{NP} \)-complete, arising from all the sciences, mathematics, economics, engineering and many other fields. (For a few examples, see this Wikipedia page and this website.)

Big Idea 22 If a single \(\text{NP} \)-complete has a polynomial-time algorithm, then there is such an algorithm for every decision problem that corresponds to the existence of an efficiently-verifiable solution.

15.2.1 What does this mean?
As we’ve seen in Solved Exercise 15.2, \(\mathbf{P} \subseteq \mathbf{NP} \). The most famous conjecture in Computer Science is that this containment is strict. That is, it is widely conjectured that \(\mathbf{P} \neq \mathbf{NP} \). One way to refute the conjecture that \(\mathbf{P} \neq \mathbf{NP} \) is to give a polynomial-time algorithm for even a single one of the \(\mathbf{NP} \)-complete problems such as 3SAT, Max Cut, or the thousands of others that have been studied in all fields of human endeavors. The fact that these problems have been studied by so many people, and yet not a single polynomial-time algorithm for any of them has been found, supports that conjecture that indeed \(\mathbf{P} \neq \mathbf{NP} \). In fact, for many of these problems (including all the ones we mentioned above), we don’t even know of a \(2^{o(n)} \)-time algorithm! However, to the frustration of computer scientists, we have not yet been able to prove that \(\mathbf{P} \neq \mathbf{NP} \) or even rule out the existence of an \(O(n) \)-time algorithm for 3SAT. Resolving whether or not \(\mathbf{P} = \mathbf{NP} \) is known as the \(\mathbf{P} \text{ vs } \mathbf{NP} \) problem. A million-dollar prize has been offered for the solution of this problem, a popular book has been written, and every year a new paper comes out claiming a proof of \(\mathbf{P} = \mathbf{NP} \) or \(\mathbf{P} \neq \mathbf{NP} \), only to wither under scrutiny.

One of the mysteries of computation is that people have observed a certain empirical “zero-one law” or “dichotomy” in the computational complexity of natural problems, in the sense that many natural problems are either in \(\mathbf{P} \) (often in \(\text{TIME}(O(n)) \) or \(\text{TIME}(O(n^2)) \)), or they are \(\text{NP} \) hard. This is related to the fact that for most natural problems, the best known algorithm is either exponential or polynomial, with not too many examples where the best running time is some strange intermediate complexity such as \(2^{2\sqrt{\log n}} \). However, it is believed that there exist problems in \(\mathbf{NP} \) that are neither in \(\mathbf{P} \) nor are \(\text{NP} \)-complete, and in fact a result known as “Ladner’s Theorem” shows that if \(\mathbf{P} \neq \mathbf{NP} \) then this is indeed the case (see also Exercise 15.1 and Fig. 15.3).

Figure 15.3: The world if \(\mathbf{P} \neq \mathbf{NP} \) (left) and \(\mathbf{P} = \mathbf{NP} \) (right). In the former case the set of \(\mathbf{NP} \)-complete problems is disjoint from \(\mathbf{P} \) and Ladner’s theorem shows that there exist problems that are neither in \(\mathbf{P} \) nor are \(\mathbf{NP} \)-complete. (There are remarkably few natural candidates for such problems, with some prominent examples being decision variants of problems such as integer factoring, lattice shortest vector, and finding Nash equilibria.) In the latter case that \(\mathbf{P} = \mathbf{NP} \) the notion of \(\mathbf{NP} \)-completeness loses its meaning, as essentially all functions in \(\mathbf{P} \) (save for the trivial constant zero and constant one functions) are \(\mathbf{NP} \)-complete.

Figure 15.4: A rough illustration of the (conjectured) status of problems in exponential time. Darker colors correspond to higher running time, and the circle in the middle is the problems in \(\mathbf{P} \). \(\mathbf{NP} \) is a (conjectured to be proper) superclass of \(\mathbf{P} \) and the \(\mathbf{NP} \)-complete problems (or \(\text{NPC} \) for short) are the “hardest” problems in \(\mathbf{NP} \), in the sense that a solution for one of them implies a solution for all other problems in \(\mathbf{NP} \). It is conjectured that all the \(\mathbf{NP} \)-complete problems require at least \(\exp(n^\epsilon) \) time to solve for a constant \(\epsilon > 0 \), and many require \(\exp(\Omega(n)) \) time. The permanent is not believed to be contained in \(\mathbf{NP} \) though it is \(\mathbf{NP} \)-hard, which means that a polynomial-time algorithm for it implies that \(\mathbf{P} = \mathbf{NP} \).
15.2.2 The Cook-Levin Theorem: Proof outline

We will now prove the Cook-Levin Theorem, which is the underpinning to a great web of reductions from 3SAT to thousands of problems across many great fields. Some problems that have been shown to be \(\text{NP} \)-complete include: minimum-energy protein folding, minimum surface-area foam configuration, map coloring, optimal Nash equilibrium, quantum state entanglement, minimum supersequence of a genome, minimum codeword problem, shortest vector in a lattice, minimum genus knots, positive Diophantine equations, integer programming, and many many more. The worst-case complexity of all these problems is (up to polynomial factors) equivalent to that of 3SAT, and through the Cook-Levin Theorem, to all problems in \(\text{NP} \).

To prove Theorem 15.6 we need to show that \(F \leq_p 3\text{SAT} \) for every \(F \in \text{NP} \). We will do so in three stages. We define two intermediate problems: \(\text{NANDSAT} \) and \(3\text{NAND} \). We will shortly show the definitions of these two problems, but Theorem 15.6 will follow from combining the following three results:

1. \(\text{NANDSAT} \) is \(\text{NP} \)-hard (Lemma 15.8).
2. \(\text{NANDSAT} \leq_p 3\text{NAND} \) (Lemma 15.9).
3. \(3\text{NAND} \leq_p 3\text{SAT} \) (Lemma 15.10).

By the transitivity of reductions, it will follow that for every \(F \in \text{NP} \),

\[
F \leq_p \text{NANDSAT} \leq_p 3\text{NAND} \leq_p 3\text{SAT}
\]

hence establishing Theorem 15.6.

We will prove these three results Lemma 15.8, Lemma 15.9 and Lemma 15.10 one by one, providing the requisite definitions as we go along.

15.3 The NANDSAT Problem, and Why It Is NP Hard

The function \(\text{NANDSAT} : \{0,1\}^* \to \{0,1\} \) is defined as follows:

- The input to \(\text{NANDSAT} \) is a string \(Q \) representing a NAND-CIRC program (or equivalently, a circuit with NAND gates).
- The output of \(\text{NANDSAT} \) on input \(Q \) is 1 if and only if there exists a string \(w \in \{0,1\}^n \) (where \(n \) is the number of inputs to \(Q \)) such that \(Q(w) = 1 \).

Solved Exercise 15.5 — \(\text{NANDSAT} \in \text{NP} \). Prove that \(\text{NANDSAT} \in \text{NP} \).
Solution:
We have seen that the circuit (or straightline program) evaluation problem can be computed in polynomial time. Specifically, given a NAND-CIRC program Q of s lines and n inputs, and $w \in \{0, 1\}^n$, we can evaluate Q on the input w in time which is polynomial in s and hence verify whether or not $Q(w) = 1$.

We now prove that NANDSAT is NP hard.

Lemma 15.8 NANDSAT is NP hard.

Proof Idea:
The proof closely follows the proof that $P \subseteq P_{/\text{poly}}$ (Theorem 13.12, see also Section 13.6.2). Specifically, if $F \in \text{NP}$ then there is a polynomial time Turing machine M and positive integer a such that for every $x \in \{0, 1\}^n$, $F(x) = 1$ iff there is some $w \in \{0, 1\}^n$ such that $M(xw) = 1$. The proof that $P \subseteq P_{/\text{poly}}$ gave us a way (via “unrolling the loop”) to come up in polynomial time with a Boolean circuit C on n^a inputs that computes the function $w \mapsto M(xw)$. We can then translate C into an equivalent NAND circuit (or NAND-CIRC program) Q. We see that there is a string $w \in \{0, 1\}^n$ such that $Q(w) = 1$ if and only if there is such w satisfying $M(xw) = 1$ which (by definition) happens if and only if $F(x) = 1$. Hence the translation of x into the circuit Q is a reduction showing $F \leq_p \text{NANDSAT}$.

Proof of Lemma 15.8. Let $F \in \text{NP}$. To prove Lemma 15.8 we need to give a polynomial-time computable function that will map every $x^* \in \{0, 1\}^*$ to a NAND-CIRC program Q such that $F(x) = \text{NANDSAT}(Q)$.

Let $x^* \in \{0, 1\}^*$ be such a string and let $n = |x^*|$ be its length. By Definition 15.1 there exists $V \in P$ and positive $a \in \mathbb{N}$ such that $F(x^*) = 1$ if and only if there exists $w \in \{0, 1\}^n$ satisfying $V(x^*w) = 1$.

The proof is a little bit technical but ultimately follows quite directly from the definition of NP, as well as the ability to “unroll the loop” of NAND-TM programs as discussed in Section 13.6.2. If you find it confusing, try to pause here and think how you would implement your favorite programming language the function unroll which on input a NAND-TM program P and numbers T, n outputs an n-input NAND-CIRC program Q of $O(|T|)$ lines such that for every input $z \in \{0, 1\}^n$, if P halts on z within at most T steps and outputs y, then $Q(z) = y$.

Proof of Lemma 15.8.
Let $m = n^a$. Since $V \in \text{P}$ there is some NAND-TM program P^* that computes V on inputs of the form xw with $x \in \{0, 1\}^n$ and $w \in \{0, 1\}^m$ in at most $(n + m)^c$ time for some constant c. Using our “unrolling the loop NAND-TM to NAND compiler” of Theorem 13.14, we can obtain a NAND-CIRC program Q' that has $n + m$ inputs and at most $O((n + m)^2c)$ lines such that $Q'(xw) = P^*(xw)$ for every $x \in \{0, 1\}^n$ and $w \in \{0, 1\}^m$.

We can then use a simple “hardwiring” technique, reminiscent of Remark 9.11 to map Q' into a circuit/NAND-CIRC program Q on m inputs such that $Q(w) = Q'(x^*w)$ for every $w \in \{0, 1\}^m$.

CLAIM: There is a polynomial-time algorithm that on input a NAND-CIRC program Q' on $n + m$ inputs and $x^* \in \{0, 1\}^n$, outputs a NAND-CIRC program Q such that for every $w \in \{0, 1\}^m$, $Q(w) = Q'(x^*w)$.

PROOF OF CLAIM: We can do so by adding a few lines to ensure that the variables zero and one are 0 and 1 respectively, and then simply replacing any reference in Q' to an input x_i with $i \in [n]$ the corresponding value based on x_i^*. See Fig. 15.5 for an implementation of this reduction in Python.

Our final reduction maps an input x^*, into the NAND-CIRC program Q obtained above. By the above discussion, this reduction runs in polynomial time. Since we know that $F(x^*) = 1$ if and only if there exists $w \in \{0, 1\}^m$ such that $P^*(x^*w) = 1$, this means that $F(x^*) = 1$ if and only if $\text{NANDSAT}(Q) = 1$, which is what we wanted to prove.

15.4 THE 3NAND PROBLEM

The 3NAND problem is defined as follows:

- The **input** is a logical formula Ψ on a set of variables z_0, \ldots, z_{r-1} which is an AND of constraints of the form $z_i = \text{NAND}(z_j, z_k)$.
The output is 1 if and only if there is an input $z \in \{0, 1\}^r$ that satisfies all of the constraints.

For example, the following is a 3NAND formula with 5 variables and 3 constraints:

$$\Psi = (z_3 = \text{NAND}(z_0, z_2)) \land (z_1 = \text{NAND}(z_0, z_2)) \land (z_4 = \text{NAND}(z_3, z_1)) \, .$$

In this case $3\text{NAND}(\Psi) = 1$ since the assignment $z = 01010$ satisfies it. Given a 3NAND formula Ψ on r variables and an assignment $z \in \{0, 1\}^r$, we can check in polynomial time whether $\Psi(z) = 1$, and hence $3\text{NAND} \in \text{NP}$. We now prove that 3NAND is NP hard:

Lemma 15.9 $\text{NANDSAT} \leq_p 3\text{NAND}$.

Proof Idea:
To prove Lemma 15.9 we need to give a polynomial-time map from every NAND-CIRC program Q to a 3NAND formula Ψ such that there exists w such that $Q(w) = 1$ if and only if there exists z satisfying Ψ.

For every line i of Q, we define a corresponding variable z_i of Ψ. If the line i has the form $foo = \text{NAND}(bar, blah)$ then we will add the clause $z_i = \text{NAND}(z_j, z_k)$ where j and k are the last lines in which bar and blah were written to. We will also set variables corresponding to the input variables, as well as add a clause to ensure that the final output is 1. The resulting reduction can be implemented in about a dozen lines of Python, see Fig. 15.6.

Figure 15.6: Python code to reduce an instance Q of NANDSAT to an instance Ψ of 3NAND. In the example above we transform the NAND-CIRC program xor5 which has 5 input variables and 16 lines, into a 3NAND formula Ψ that has 24 variables and 20 clauses. Since xor5 outputs 1 on the input 1, 0, 0, 1, 1, there exists an assignment $z \in \{0, 1\}^{24}$ to Ψ such that $(z_0, z_1, z_2, z_3, z_4) = (1, 0, 0, 1, 1)$ and Ψ evaluates to true on z.

```python
# Reduce NANDSAT to 3NAND
# Def: NANDSAT prolem Q
# Output: 3NAND formula \( \Psi \)
# s, p, r variables if \( G \) is

def NAND2NAND_3NAND(G):
    \( \Psi \) = ...
    # \text{variables} \( z_i \) is the last written to \text{variables} \( z_i \) is the last written to
    return \( \Psi \)

print(NAND2NAND_3NAND(xor5))

{z5 = NAND(z20, z26) \land (z26 = NAND(z20, z25) \land (z27 = NAND(z26, z24)) \land (z28 = NAND(z20, z21) \land (z29 = NAND(z28, z25) \land (z30 = NAND(z20, z23) \land (z31 = NAND(z29, z20) \land (z32 = NAND(z21, z22) \land (z33 = NAND(z22, z23) \land (z34 = NAND(z24, z22) \land (z35 = NAND(z34, z35) \land (z36 = NAND(z25, z35) \land (z37 = NAND(z36, z35) \land (z38 = NAND(z37, z35) \land (z39 = NAND(z38, z35)) \land (z40 = NAND(z39, z35))) \land (z41 = NAND(z40, z25)))) \land (z42 = NAND(z22, z23)))) \land (z43 = NAND(z21, z22)))) \land (z44 = NAND(z20, z29)))) \land (z45 = NAND(z21, z22)))) \land (z46 = NAND(z20, z29)))) \land (z47 = NAND(z21, z22)))) \land (z48 = NAND(z20, z29)))) \land (z49 = NAND(z21, z22)))) \land (z50 = NAND(z20, z29))))

eval3NAND(NAND2NAND_3NAND(xor5, z0, z1, z2, z3, z4, z5, z6, z7))

True
```
Proof of Lemma 15.9. To prove Lemma 15.9 we need to give a reduction from NANDSAT to 3NAND. Let Q be a NAND-CIRC program with n inputs, one output, and m lines. We can assume without loss of generality that Q contains the variables one and zero as usual.

We map Q to a 3NAND formula Ψ as follows:

- Ψ has $m + n$ variables z_0, \ldots, z_{m+n-1}.
- The first n variables z_0, \ldots, z_{n-1} will correspond to the inputs of Q.
- The next m variables z_n, \ldots, z_{n+m-1} will correspond to the m lines of Q.
- For every $\ell \in \{n, n+1, \ldots, n+m\}$, if the $\ell - n$-th line of the program Q is $\text{foo} = \text{NAND}(\text{bar}, \text{blah})$ then we add to Ψ the constraint $z_\ell = \text{NAND}(z_j, z_k)$ where $j - n$ and $k - n$ correspond to the last lines in which the variables bar and blah (respectively) were written to. If one or both of bar and blah was not written to before then we use $z_\ell 0$ instead of the corresponding value z_j or z_k in the constraint, where $\ell 0 - n$ is the line in which zero is assigned a value. If one or both of bar and blah is an input variable $X[i]$ then we use z_i in the constraint.
- Let ℓ^* be the last line in which the output y_0 is assigned a value. Then we add the constraint $z_{\ell^*} = \text{NAND}(z_{\ell_0}, z_{\ell_0})$ where $\ell_0 - n$ is as above the last line in which zero is assigned a value. Note that this is effectively the constraint $z_{\ell^*} = \text{NAND}(0, 0) = 1$.

To complete the proof we need to show that there exists $w \in \{0, 1\}^n$ s.t. $Q(w) = 1$ if and only if there exists $z \in \{0, 1\}^{n+m}$ that satisfies all constraints in Ψ. We now show both sides of this equivalence.

Part I: Completeness. Suppose that there is $w \in \{0, 1\}^n$ s.t. $Q(w) = 1$. Let $z \in \{0, 1\}^{n+m}$ be defined as follows: for $i \in [n]$, $z_i = w_i$ and for $i \in \{n, n+1, \ldots, n+m\}$ z_i equals the value that is assigned in the $(i - n)$-th line of Q when executed on w. Then by construction z satisfies all of the constraints of Ψ (including the constraint that $z_\ell = \text{NAND}(0, 0) = 1$ since $Q(w) = 1$).

Part II: Soundness. Suppose that there exists $z \in \{0, 1\}^{n+m}$ satisfying Ψ. Soundness will follow by showing that $Q(z_0, \ldots, z_{n-1}) = 1$ (and hence in particular there exists $w \in \{0, 1\}^n$, namely $w = z_0 \cdots z_{n-1}$, such that $Q(w) = 1$). To do this we will prove the following claim (\ast): for every $\ell \in [m]$, $z_{\ell+n}$ equals the value assigned in the ℓ-th step of the execution of the program Q on z_0, \ldots, z_{n-1}. Note that because z satisfies the constraints of Ψ, (\ast) is sufficient to prove the soundness condition since these constraints imply that the last value assigned to the variable y_0 in the execution of Q on $z_0 \cdots w_{n-1}$ is equal to 1. To prove (\ast) suppose, towards a contradiction, that it is false, and let ℓ be
15.5 FROM 3NAND TO 3SAT

The final step in the proof of Theorem 15.6 is the following:

Lemma 15.10 3NAND \(\leq_p \) 3SAT.

Proof Idea:
To prove Lemma 15.10 we need to map a 3NAND formula \(\varphi \) into a 3SAT formula \(\psi \) such that \(\varphi \) is satisfiable if and only if \(\psi \) is. The idea is that we can transform every NAND constraint of the form \(a = \text{NAND}(b, c) \) into the AND of ORs involving the variables \(a, b, c \) and their negations, where each of the ORs contains at most three terms. The construction is fairly straightforward, and the details are given below.

\[\star \]

It is a good exercise for you to try to find a 3CNF formula \(\xi \) on three variables \(a, b, c \) such that \(\xi(a, b, c) \) is true if and only if \(a = \text{NAND}(b, c) \). Once you do so, try to see why this implies a reduction from 3NAND to 3SAT, and hence completes the proof of Lemma 15.10.
Proof of Lemma 15.10. The constraint

\[z_i = \text{NAND}(z_j, z_k) \quad (15.2) \]

is satisfied if \(z_i = 1 \) whenever \((z_j, z_k) \neq (1,1) \). By going through all cases, we can verify that (15.2) is equivalent to the constraint

\[(\overline{z_i} \lor \overline{z_j} \lor \overline{z_k}) \land (z_i \lor z_j) \land (z_i \lor z_k) \quad (15.3) \]

Indeed if \(z_j = z_k = 1 \) then the first constraint of Eq. (15.3) is only true if \(z_i = 0 \). On the other hand, if either of \(z_j \) or \(z_k \) equals 0 then unless \(z_i = 1 \) either the second or third constraints will fail. This means that, given any 3NAND formula \(\varphi \) over \(n \) variables \(z_0, \ldots, z_{n-1} \), we can obtain a 3SAT formula \(\psi \) over the same variables by replacing every 3NAND constraint of \(\varphi \) with three 3OR constraints as in Eq. (15.3).\(^1\) Because of the equivalence of (15.2) and (15.3), the formula \(\psi \) satisfies that \(\psi(z_0, \ldots, z_{n-1}) = \varphi(z_0, \ldots, z_{n-1}) \) for every assignment \(z_0, \ldots, z_{n-1} \in \{0,1\}^n \) to the variables. In particular \(\psi \) is satisfiable if and only if \(\varphi \) is, thus completing the proof.

\(^1\) The resulting formula will have some of the OR’s involving only two variables. If we wanted to insist on each formula involving three distinct variables we can always add a “dummy variable” \(z_{n+m} \) and include it in all the OR’s involving only two variables, and add a constraint requiring this dummy variable to be zero.

Figure 15.9: An instance of the independent set problem obtained by applying the reductions NANDSAT \(\leq_p 3\text{NAND} \leq_p 3\text{SAT} \leq_p \text{ISAT} \) starting with the xor5 NAND-CIRC program.

15.6 **WRAPPING UP**

We have shown that for every function \(F \) in \(\text{NP} \), \(F \leq_p \text{NANDSAT} \leq_p 3\text{NAND} \leq_p 3\text{SAT} \), and so 3SAT is \(\text{NP} \)-hard. Since in Chapter 14 we saw that 3SAT \(\leq_p \text{QUADEQ}, 3\text{SAT} \leq_p \text{ISET}, 3\text{SAT} \leq_p \text{MAXCUT} \) and 3SAT \(\leq_p \text{LONGPATH} \), all these problems are \(\text{NP} \)-hard as well. Finally, since all the aforementioned problems are in \(\text{NP} \), they are all in fact \(\text{NP} \)-complete and have equivalent complexity. There are thousands of other natural problems that are \(\text{NP} \)-complete as well. Finding a polynomial-time algorithm for any one of them will imply a polynomial-time algorithm for all of them.
Figure 15.10: We believe that $P \neq \text{NP}$ and all NP-complete problems lie outside of P, but we cannot rule out the possibility that $P = \text{NP}$. However, we can rule out the possibility that some NP-complete problems are in P and other do not, since we know that if even one NP-complete problem is in P then $P = \text{NP}$. The relation between P/poly and NP is not known though it can be shown that if one NP-complete problem is in P/poly then $\text{NP} \subseteq P/\text{poly}$.

15.7 EXERCISES

Exercise 15.1 — Poor man’s Ladner’s Theorem. Prove that if there is no $n^{O(\log^2 n)}$ time algorithm for 3SAT then there is some $F \in \text{NP}$ such that $F \notin P$ and F is not NP complete.\(^2\)

Exercise 15.2 — $\text{NP} \neq \text{co-NP} \Rightarrow \text{NP} \neq P$. Let 3SAT be the function that on input a 3CNF formula φ return $1 - 3\text{SAT}(\varphi)$. Prove that if $3\text{SAT} \notin \text{NP}$ then $P \neq \text{NP}$. See footnote for hint.\(^3\)

Exercise 15.3 Define WSAT to be the following function: the input is a CNF formula φ where each clause is the OR of one to three variables (without negations), and a number $k \in \mathbb{N}$. For example, the following formula can be used for a valid input to WSAT: $\varphi = (x_5 \lor x_2 \lor x_1) \land (x_1 \lor x_3 \lor x_0) \land (x_2 \lor x_4 \lor x_0)$. The output $\text{WSAT}(\varphi, k) = 1$ if and only if there exists a satisfying assignment to φ in which exactly k of the variables get the value 1. For example for the formula above

\(^2\) Hint: Use the function F that on input a formula φ and a string of the form 1^t, outputs 1 if and only if φ is satisfiable and $t = |\varphi|\log|\varphi|$.

\(^3\) Hint: Prove and then use the fact that P is closed under complement.
WSAT(\varphi, 2) = 1 since the assignment (1, 1, 0, 0, 0, 0) satisfies all the clauses. However WSAT(\varphi, 1) = 0 since there is no single variable appearing in all clauses.

Prove that WSAT is NP-complete.

Exercise 15.4 In the employee recruiting problem we are given a list of potential employees, each of which has some subset of \(m\) potential skills, and a number \(k\). We need to assemble a team of \(k\) employees such that for every skill there would be one member of the team with this skill.

For example, if Alice has the skills “C programming”, “NAND programming” and “Solving Differential Equations”, Bob has the skills “C programming” and “Solving Differential Equations”, and Charlie has the skills “NAND programming” and “Coffee Brewing”, then if we want a team of two people that covers all the four skills, we would hire Alice and Charlie.

Define the function \(EMP\) s.t. on input the skills \(L\) of all potential employees (in the form of a sequence \(L\) of \(n\) lists \(L_1, \ldots, L_n\), each containing distinct numbers between 0 and \(m\)), and a number \(k\), \(EMP(L, k) = 1\) if and only if there is a subset \(S\) of \(k\) potential employees such that for every skill \(j\) in \([m]\), there is an employee in \(S\) that has the skill \(j\).

Prove that \(EMP\) is NP complete.

Exercise 15.5 — Balanced max cut. Prove that the “balanced variant” of the maximum cut problem is NP-complete, where this is defined as \(BMC : \{0, 1\}^* \rightarrow \{0, 1\}\) where for every graph \(G = (V, E)\) and \(k \in \mathbb{N}\), \(BMC(G, k) = 1\) if and only if there exists a cut \(S\) in \(G\) cutting at least \(k\) edges such that \(|S| = |V|/2|.

Exercise 15.6 — Regular expression intersection. Let \(MANYREGS\) be the following function: On input a list of regular expressions \(exp_0, \ldots, exp_m\) (represented as strings in some standard way), output 1 if and only if there is a single string \(x \in \{0, 1\}^*\) that matches all of them. Prove that \(MANYREGS\) is NP-hard.

15.8 Bibliographical Notes
Aaronson’s 120 page survey [Aar16] is a beautiful and extensive exposition to the P vs NP problem, its importance and status. See also as well as Chapter 3 in Wigderson’s excellent book [Wig19]. Johnson [Joh12] gives a survey of the historical development of the theory of NP completeness. The following web page keeps a catalog of failed
attempts at settling $P \text{ vs } NP$. At the time of this writing, it lists about 110 papers claiming to resolve the question, of which about 60 claim to prove that $P = NP$ and about 50 claim to prove that $P \neq NP$.

Ladner’s Theorem was proved by Richard Ladner in 1975. Ladner, who was born to deaf parents, later switched his research focus into computing for assistive technologies, where he have made many contributions. In 2014, he wrote a personal essay on his path from theoretical CS to accessibility research.

Eugene Lawler’s quote on the “mystical power of twoness” was taken from the wonderful book “The Nature of Computation” by Moore and Mertens. See also this memorial essay on Lawler by Lenstra.