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· Introduce the notion of polynomial-time reductions as a way to relate the complexity of problems to one another.

· See several examples of such reductions.

· 3SAT as a basic starting point for reductions.
Consider some of the problems we have encountered in chapefficient:
1. The 3SAT problem: deciding whether a given 3CNF formula has a satisfying assignment.
1. Finding the longest path in a graph.
1. Finding the maximum cut in a graph.
1. Solving quadratic equations over  variables .
All of these problems have the following properties:
· These are important problems, and people have spent significant effort on trying to find better algorithms for them.
· Each one of these is a search problem, whereby we search for a solution that is “good” in some easy to define sense (e.g., a long path, a satisfying assignment, etc.).
· Each of these problems has a trivial exponential time algorithm that involve enumerating all possible solutions.
· At the moment, for all these problems the best known algorithm is not much faster than the trivial one in the worst case.
In this chapter and in cooklevinchap we will see that, despite their apparent differences, we can relate the computational complexity of these and many other problems. In fact, it turns out that the problems above are computationally equivalent, in the sense that solving one of them immediately implies solving the others. This phenomenon, known as  completeness, is one of the surprising discoveries of theoretical computer science, and we will see that it has far-reaching ramifications.
This chapter introduces the concept of a polynomial time reduction which is a central object in computational complexity and this book in particular. A polynomial-time reduction is a way to reduce the task of solving one problem to another. The way we use reductions in complexity is to argue that if the first problem is hard to solve efficiently, then the second must also be hard. We see several examples for reductions in this chapter, and reductions will be the basis for the theory of  completeness that we will develop in cooklevinchap.
All the code for the reductions described in this chapter is available on the following Jupyter notebook.
[bookmark: reductionsoverviewfig][image: ../figure/reductionsoverview.png]
In this chapter we show that if the  problem cannot be solved in polynomial time, then neither can the , ,  and  problems. We do this by using the reduction paradigm showing for example “if pigs could whistle” (i.e., if we had an efficient algorithm for ) then “horses could fly” (i.e., we would have an efficient algorithm for .)
In this chapter we will see that for each one of the problems of finding a longest path in a graph, solving quadratic equations, and finding the maximum cut, if there exists a polynomial-time algorithm for this problem then there exists a polynomial-time algorithm for the 3SAT problem as well. In other words, we will reduce the task of solving 3SAT to each one of the above tasks. Another way to interpret these results is that if there does not exist a polynomial-time algorithm for 3SAT then there does not exist a polynomial-time algorithm for these other problems as well. In cooklevinchap we will see evidence (though no proof!) that all of the above problems do not have polynomial-time algorithms and hence are inherently intractable.
[bookmark: formaldefdecisionexamplessec]Formal definitions of problems
For reasons of technical convenience rather than anything substantial, we concern ourselves with decision problems (i.e., Yes/No questions) or in other words Boolean (i.e., one-bit output) functions. We model the problems above as functions mapping  to  in the following way:
3SAT. The 3SAT problem can be phrased as the function  that takes as input a 3CNF formula  (i.e., a formula of the form  where each  is the OR of three variables or their negation) and maps  to  if there exists some assignment to the variables of  that causes it to evalute to true, and to  otherwise. For example
$$3SAT\left("(x_0 \vee \overline{x}_1 \vee x_2)  \wedge   (x_1 \vee x_2 \vee \overline{x_3}) \wedge (\overline{x}_0 \vee \overline{x}_2 \vee x_3)" \right)  = 1$$
since the assignment  satisfies the input formula. In the above we assume some representation of formulas as strings, and define the function to output  if its input is not a valid representation; we use the same convention for all the other functions below.
Quadratic equations. The quadratic equations problem corresponds to the function  that maps a set of quadratic equations  to  if there is an assignment  that satisfies all equations, and to  otherwise.
Longest path. The longest path problem corresponds to the function  that maps a graph  and a number  to  if there is a simple path in  of length at least , and maps  to  otherwise. The longest path problem is a generalization of the well-known Hamiltonian Path Problem of determining whether a path of length  exists in a given  vertex graph.
Maximum cut. The maximum cut problem corresponds to the function  that maps a graph  and a number  to  if there is a cut in  that cuts at least  edges, and maps  to  otherwise.
All of the problems above are in  but it is not known whether or not they are in . However, we will see in this chapter that if either  ,  or  are in , then so is .
[bookmark: polytimeredsec]Polynomial-time reductions
Suppose that  are two Boolean functions. A polynomial-time reduction (or sometimes just “reduction” for short) from  to  is a way to show that  is “no harder” than , in the sense that a polynomial-time algorithm for  implies a polynomial-time algorithm for .
[bookmark: reduction-def]
Let . We say that  reduces to , denoted by  if there is a polynomial-time computable  such that for every ,

We say that  and  have equivalent complexity if  and .
[bookmark: reductionsfig][image: ../figure/reductiondescription.png]
If  then we can transform a polynomial-time algorithm  that computes  into a polynomial-time algorithm  that computes . To compute  we can run the reduction  guaranteed by the fact that  to obtain  and then run our algorithm  for  to compute .
The following exercise justifies our intuition that  signifies that “ is no harder than ”.
Prove that if  and  then .
As usual, solving this exercise on your own is an excellent way to make sure you understand reduction-def.
Suppose there is an algorithm  that computes  in time  where  is its input size. Then, eq:reduction directly gives an algorithm  to compute  (see reductionsfig). Indeed, on input , Algorithm  will run the polynomial-time reduction  to obtain  and then return . By eq:reduction,  and hence Algorithm  will indeed compute .
We now show that  runs in polynomial time. By assumption,  can be computed in time  for some polynomial . In particular, this means that  (as just writing down  takes  steps). Computing  will take at most  steps. Thus the total running time of  on inputs of length  is at most the time to compute , which is bounded by , and the time to compute , which is bounded by , and since the composition of two polynomials is a polynomial,  runs in polynomial time.
A reduction  shows that  is “no harder than ” or equivalently that  is “no easier than ”.
[bookmark: whistling-pigs-and-flying-horses]Whistling pigs and flying horses
A reduction from  to  can be used for two purposes:
· If we already know an algorithm for  and  then we can use the reduction to obtain an algorithm for . This is a widely used tool in algorithm design. For example in linerprogsec we saw how the Min-Cut Max-Flow theorem allows to reduce the task of computing a minimum cut in a graph to the task of computing a maximum flow in it.
· If we have proven (or have evidence) that there exists no polynomial-time algorithm for  and  then the existence of this reduction allows us to conclude that there exists no polynomial-time algorithm for . This is the “if pigs could whistle then horses could fly” interpretation we’ve seen in reductionsuncompsec. We show that if there was an hypothetical efficient algorithm for  (a “whistling pig”) then since  then there would be an efficient algorithm for  (a “flying horse”). In this book we often use reductions for this second purpose, although the lines between the two is sometimes blurry (see the bibliographical notes in reductionsbibnotes).
The most crucial difference between the notion in reduction-def and the reductions we saw in the context of uncomputability (e.g., in reductionsuncompsec) is that for relating time complexity of problems, we need the reduction to be computable in polynomial time, as opposed to merely computable. reduction-def also restricts reductions to have a very specific format. That is, to show that , rather than allowing a general algorithm for  that uses a “magic box” that computes , we only allow an algorithm that computes  by outputting . This restricted form is convenient for us, but people have defined and used more general reductions as well (see reductionsbibnotes).
In this chapter we use reductions to relate the computational complexity of the problems mentioned above: 3SAT, Quadratic Equations, Maximum Cut, and Longest Path, as well as a few others. We will reduce 3SAT to the latter problems, demonstrating that solving any one of them efficiently will result in an efficient algorithm for 3SAT. In cooklevinchap we show the other direction: reducing each one of these problems to 3SAT in one fell swoop.
Transitivity of reductions. Since we think of  as saying that (as far as polynomial-time computation is concerned)  is “easier or equal in difficulty to” , we would expect that if  and , then it would hold that . Indeed this is the case:
For every , if  and  then .
If  and  then there exist polynomial-time computable functions  and  mapping  to  such that for every ,  and for every , . Combining these two equalities, we see that for every ,  and so to show that , it is sufficient to show that the map  is computable in polynomial time. But if there are some constants  such that  is computable in time  and  is computable in time  then  is computable in time  which is polynomial.
[bookmark: Xb26ffb51c3156b56ffbdf424569b767961f143b]Reducing 3SAT to zero one and quadratic equations
We now show our first example of a reduction. The Zero-One Linear Equations problem corresponds to the function  whose input is a collection  of linear equations in variables , and the output is  iff there is an assignment  of  values to the variables that satisfies all the equations. For example, if the input  is a string encoding the set of equations

then  since the assignment  satisfies all three equations. We specifically restrict attention to linear equations in variables  in which every equation has the form  where  and .[footnoteRef:37] [37:  If you are familiar with matrix notation you may note that such equations can be written as  where  is an  matrix with entries in  and .] 

If we asked the question of whether there is a solution  of real numbers to , then this can be solved using the famous Gaussian elimination algorithm in polynomial time. However, there is no known efficient algorithm to solve . Indeed, such an algorithm would imply an algorithm for  as shown by the following theorem:
[bookmark: tsattozoeqthm]

[bookmark: section-1]
A constraint  can be written as . This is a linear inequality but since the sum on the left-hand side is at most three, we can also turn it into an equality by adding two new variables  and writing it as . (We will use fresh variables  for every constraint.) Finally, for every variable  we can add a variable  corresponding to its negation by adding the equation , hence mapping the original constraint  to . The main takeaway technique from this reduction is the idea of adding auxiliary variables to replace an equation such as  that is not quite in the form we want with the equivalent (for  valued variables) equation  which is in the form we want.
[bookmark: threesat2zoeqreductionfig][image: ../figure/3sat2zoeqreduction.png]
Left: Python code implementing the reduction of  to . Right: Example output of the reduction. Code is in our repository.
To prove the theorem we need to:
1. Describe an algorithm  for mapping an input  for  into an input  for .
1. Prove that the algorithm runs in polynomial time.
1. Prove that  for every 3CNF formula .
We now proceed to do just that. Since this is our first reduction, we will spell out this proof in detail. However it straightforwardly follows the proof idea.
INPUT: 3CNF formula $\varphi$ with $n$ variables $x_0,\ldots,x_{n-1}$ and $m$ clauses.

OUTPUT: Set $E$ of linear equations over $0/1$ such that $3SAT(\varphi)=1$ iff $01EQ(E)=1$.

Let $E$'s variables be $x_0,\ldots,x_{n-1}$, $x'_0,\ldots,x'_{n-1}$, $y_0,\ldots,y_{m-1}$, $z_0,\ldots,z_{m-1}$.
For{$i \in [n]$}
  add to $E$ the equation $x_i + x'_i = 1$
endfor
For{$j\in [m]$}
  Let $j$-th clause be $w_0 \vee w_1 \vee w_2$ where $w_0,w_1,w_2$ are literals.
  For{$a\in[3]$}
    If{$w_a$ is variable $x_i$}
      set $t_a \leftarrow x_i$
    endif
    If{$w_a$ is negation $\neg x_i$}
      set $t_a \leftarrow x'_i$
    endif
   endfor
   Add to $E$ the equation $t_0 + t_1 + t_2 + y_j + z_j = 3$.
endfor
return $E$ 
The reduction is described in zerooneeqreduction, see also threesat2zoeqreductionfig. If the input formula has  variables and  clauses, zerooneeqreduction creates a set  of  equations over  variables. zerooneeqreduction makes an initial loop of  steps (each taking constant time) and then another loop of  steps (each taking constant time) to create the equations, and hence it runs in polynomial time.
Let  be the function computed by zerooneeqreduction. The heart of the proof is to show that for every 3CNF , . We split the proof into two parts. The first part, traditionally known as the completeness property, is to show that if  then . The second part, traditionally known as the soundness property, is to show that if  then . (The names “completeness” and “soundness” derive viewing a solution to  as a “proof” that  is satisfiable, in which case these conditions corresponds to completeness and soundness as defined in #godelproofsystemssec. However, if you find the names confusing you can simply think of completeness as the “-instance maps to -instance” property and soundness as the “-instance maps to -instance” property.)
We complete the proof by showing both parts:
· Completeness: Suppose that , which means that there is an assignment  that satisfies . If we use the assignment  and  for the first  variables of  then we will satisfy all equations of the form . Moreover, for every , if  is the equation arising from the th clause of  (with  being variables of the form  or  depending on the literals of the clause) then our assignment to the first  variables ensures that  (since  satisfied ) and hence we can assign values to  and  that will ensure that the equation  is satisfied. Hence in this case  is satisfied, meaning that .
· Soundness: Suppose that , which means that the set of equations  has a satisfying assignment , , , . Then, since the equations contain the condition , for every ,  is the negation of , and morover, for every , if  has the form  and is the -th clause of , then the corresponding assignment  will ensure that , implying that  is satisfied. Hence in this case .
[bookmark: quadratic-equations]Quadratic equations
Now that we reduced  to , we can use this to reduce  to the quadratic equations problem. This is the function  in which the input is a list of -variate polynomials  that are all of degree at most two (i.e., they are quadratic) and with integer coefficients. (The latter condition is for convenience and can be achieved by scaling.) We define  to equal  if and only if there is a solution  to the equations , , , .
For example, the following is a set of quadratic equations over the variables :

You can verify that  satisfies this set of equations if and only if  and .
[bookmark: quadeq-thm]

[bookmark: section-2]
Using the transitivity of reductions (transitiveex), it is enough to show that , but this follows since we can phrase the equation  as the quadratic constraint . The takeaway technique of this reduction is that we can use non-linearity to force continuous variables (e.g., variables taking values in ) to be discrete (e.g., take values in ).
By tsattozoeqthm and transitiveex, it is sufficient to prove that . Let  be an instance of  with variables . We map  to the set of quadratic equations  that is obtained by taking the linear equations in  and adding to them the  quadratic equations  for all . (See zeroonetoquadreductionalg.) The map  can be computed in polynomial time. We claim that  if and only if . Indeed, the only difference between the two instances is that:
· In the  instance , the equations are over variables  in .
· In the  instance , the equations are over variables  but we have the extra constraints  for all .
Since for every ,  if and only if , the two sets of equations are equivalent and  which is what we wanted to prove.
INPUT: Set $E$ of linear equations over $n$ variables $x_0,\ldots,x_{n-1}$.

OUTPUT: Set $E'$ of quadratic equations over $m$ variables $w_0,\ldots,w_{m-1}$ such that there is an $0/1$ assignment $x\in \{0,1\}^n$
satisfying the equations of $E$ iff there is an assignment $w \in \R^m$ satisfying the equations of $E'$.
That is, $01EQ(E) = QUADEQ(E')$.

Let $m \leftarrow n$.
Variables of $E'$ are set to be same variable $x_0,\ldots, x_{n-1}$ as $E$.
For{every equation $e\in E$}
  Add $e$ to $E'$
endfor
For{$i\in [n]$}
   Add to $E'$ the equation $x_i^2 - x_i = 0$.
endfor
return $E'$ 
[bookmark: the-subset-sum-problem]The subset sum problem
As another consequence of the reduction of  to , we can also show that  (through ) reduces to the subset sum problem (also known as the knapsack problem). In the subset sum problem, we are given a list of integers  and an integer . We need to determine whether or not there exists some set of the integers that sums up to . That is, for ,  if and only if there exists  such that . Note that the input length for the subset sum problem is the length of string needed to encode all the numbers, which will be approximately , since encoding an integer  using the binary representation requires  bits.
[bookmark: subsetsum-thm]

[bookmark: section-3]
We reduce from . The intuition is the following. Consider an instance  of  with  variables  and  equations . Recall that each equation  in  has the form  (potentially with more or less than three variables summed up on the left-hand side of the equation). For every variable , we can define a vector  where  if the variable  appears in the equation  and  otherwise. Then there is a solution to the set of equations if and only if there is some set  (corresponding to the ’s such that ) such that  where  is the vector of right hand sides of the equations (i.e.,  is the value  on the righthand side of the -th equation). Now if we could interpret the vectors  and  as numbers then we could think of this as a subset sum instance. The key insight is that we can in fact think of vectors as numbers by thinking of the -th coordinate of the vector  as the -th digit. Since the vectors are in , the natural choice is to use the binary basis, but this turns out to cause issues with “carries” when we add them up. Hence we use a larger basis , see proof below.
For a given set of  on  variables, we note that the right hand side can never be larger than  (since the sum of at most  variables in  is at most ). More concretely, if the instance has such an equation then we can know for sure that the answer is  (and in the context of a reduction map it into some trivial instance of subset sum that doesn’t have a solution such as  and ).
Our reduction is described in zeroonetossumnalg. On input an instance  of  over  variables , we output an  instance  computed as follows:
·  where  equals  if the variable  appears in the equation  and equals  otherwise. The number  is set to be  (any numb er larger than  would work.)
·  where  is the integer on the right-hand side of the equation .
In other words,  and  are the integers such that, written in the -ary basis, the -th digit of  is  iff  appears in , and the -th digit of  is the right-hand side of .
The following claim will imply the correctness of the reduction:
Claim: For every , if  then  satisfies the equations of  if and only if .
Proof: Key to the proof is the following simple property of gradeschool addition: when adding at most  numbers in the -ary basis, if all the numbers have all their digits either  or , and , then for every , the -th digit of the sum is the sum of the -th digits of the numbers. This is a simple consequence of the fact that there is no “carry” in the addition. Since in our case the numbers  satisfy this property in the -ary basis, and , we get that for every  and every digit , the -th digit of the sum  is simply the sum of the -th digit, which would correspond to the sum over  for all ’s that participate in the -th equation. This sum would equal the -th digit of  if and only if that equation is satisfied.
The claim shows that  which is what we needed to prove.
INPUT: Set $E = \{ e_t \}_{t\in [m]}$ of $m$ linear equations over $n$ variables $x_0,\ldots,x_{n-1}$.

OUTPUT: Numbers $y_0,\ldots,y_{n-1},T \in \mathbb{Z}$ such that there is an $0/1$ assignment $x\in \{0,1\}^n$ satisfying the equations of $E$ iff there is $S \subseteq [n]$ such that $\sum_{i\in S}y_i = T$.

For{every equation $e_t\in E$}
  Let $A \subseteq [n]$ and $b\in \mathbb{Z}$ be such that $e_t$ has the form $\sum_{i\in A} x_i = b$
  Let $v_i^t \leftarrow 1$ -if $i\in A$ and $v_i^t \leftarrow  0$ otherwise.
  Let $b_t  \leftarrow  b$. 
endfor
Set $B \leftarrow 2n$
For{$i\in [n]$}
   Let $y_i \leftarrow \sum_{t=1}^m B^t v_i^t$. 
endfor
Let $T \leftarrow  \sum_{t=1}^T B^t b_t$
return $y_0,\ldots,y_{n-1},T$
[bookmark: the-independent-set-problem]The independent set problem
For a graph , an independent set (also known as a stable set) is a subset  such that there are no edges with both endpoints in  (in other words, ). Every “singleton” (set consisting of a single vertex) is trivially an independent set, but finding larger independent sets can be challenging. The maximum independent set problem (henceforth simply “independent set”) is the task of finding the largest independent set in the graph. The independent set problem is naturally related to scheduling problems: if we put an edge between two conflicting tasks, then an independent set corresponds to a set of tasks that can all be scheduled together without conflicts. The independent set problem has been studied in a variety of settings, including for example in the case of algorithms for finding structure in protein-protein interaction graphs.
As mentioned in formaldefdecisionexamplessec, we think of the independent set problem as the function  that on input a graph  and a number  outputs  if and only if the graph  contains an independent set of size at least . We now reduce 3SAT to Independent set.
[bookmark: isetnpc]
.
[bookmark: section-4]
The idea is that finding a satisfying assignment to a 3SAT formula corresponds to satisfying many local constraints without creating any conflicts. One can think of “” and “” as two conflicting events, and of the constraints  as creating a conflict between the events “”, “” and “”, saying that these three cannot simultaneously co-occur. Using these ideas, we can we can think of solving a 3SAT problem as trying to schedule non-conflicting events, though the devil is, as usual, in the details. The takeaway technique here is to map each clause of the original formula into a gadget which is a small subgraph (or more generally “subinstance”) satisfying some convenient properties. We will see these “gadgets” used time and again in the construction of polynomial-time reductions.
[bookmark: example3sat2isetfig][image: ../figure/example3sat2iset.png]
An example of the reduction of  to  for the case the original input formula is . We map each clause of  to a triangle of three vertices, each tagged above with “” or “” depending on the value of  that would satisfy the particular literal. We put an edge between every two literals that are conflicting (i.e., tagged with “” and “” respectively).
INPUT: $3SAT$  formula $\varphi$ with $n$ variables and $m$ clauses.

OUTPUT: Graph $G=(V,E)$ and number $k$, such that $G$ has an independent set of size $k$ iff $\varphi$ has a satisfying assignment.
That is, $3SAT(\varphi) = ISET(G,k)$, 

Initialize $V \leftarrow \emptyset, E \leftarrow \emptyset$
For {every clause $C = y \vee y' \vee y''$ of $\varphi$}
  Add three vertices $(C,y),(C,y'),(C,y'')$ to $V$
  Add edges $\{ (C,y), (C,y') \}$, $\{(C,y'),(C,y'') \}$, $\{ (C,y''), (C,y) \}$ to $E$.
endfor
for {every distinct clauses $C,C'$ in $\varphi$}
  for {every $i\in [n]$}
      if{$C$ contains literal $x_i$ and $C'$ contains literal $\overline{x}_i$}
          Add edge $\{ (C,x_i), (C',\overline{x}_i) \}$ to $E$
      endif
  endfor
endfor
return $(G=(V,E), m)$
Given a 3SAT formula  on  variables and with  clauses, we will create a graph  with  vertices as follows. (See threesattoisetreductionalg, see also example3sat2isetfig for an example and threesattoisfig for Python code.)
· A clause  in  has the form  where  are literals (variables or their negation). For each such clause , we will add three vertices to , and label them , , and  respectively. We will also add the three edges between all pairs of these vertices, so they form a triangle. Since there are  clauses in , the graph  will have  vertices.
· In addition to the above edges, we also add an edge between every pair of vertices of the form  and  where  and  are conflicting literals. That is, we add an edge between  and  if there is an  such that  and  or vice versa.
The algorithm constructing  based on  takes polynomial time since it involves two loops, the first taking  steps and the second taking  steps (see threesattoisetreductionalg). Hence to prove the theorem we need to show that  is satisfiable if and only if  contains an independent set of  vertices. We now show both directions of this equivalence:
Part 1: Completeness. The “completeness” direction is to show that if  has a satisfying assignment , then  has an independent set  of  vertices. Let us now show this.
Indeed, suppose that  has a satisfying assignment . Then for every clause  of , one of the literals  must evaluate to true under the assignment  (as otherwise it would not satisfy ). We let  be a set of  vertices that is obtained by choosing for every clause  one vertex of the form  such that  evaluates to true under . (If there is more than one such vertex for the same , we arbitrarily choose one of them.)
We claim that  is an independent set. Indeed, suppose otherwise that there was a pair of vertices  and  in  that have an edge between them. Since we picked one vertex out of each triangle corresponding to a clause, it must be that . Hence the only way that there is an edge between  and  is if  and  are conflicting literals (i.e.  and  for some ). But then they can’t both evaluate to true under the assignment , which contradicts the way we constructed the set . This completes the proof of the completeness condition.
Part 2: Soundness. The “soundness” direction is to show that if  has an independent set  of  vertices, then  has a satisfying assignment . Let us now show this.
Indeed, suppose that  has an independent set  with  vertices. We will define an assignment  for the variables of  as follows. For every , we set  according to the following rules:
· If  contains a vertex of the form  then we set .
· If  contains a vertex of the form  then we set .
· If  does not contain a vertex of either of these forms, then it does not matter which value we give to , but for concreteness we’ll set .
The first observation is that  is indeed well defined, in the sense that the rules above do not conflict with one another, and ask to set  to be both  and . This follows from the fact that  is an independent set and hence if it contains a vertex of the form  then it cannot contain a vertex of the form .
We now claim that  is a satisfying assignment for . Indeed, since  is an independent set, it cannot have more than one vertex inside each one of the  triangles  corresponding to a clause of . Hence since , it must have exactly one vertex in each such triangle. For every clause  of , if  is the vertex in  in the triangle corresponding to , then by the way we defined , the literal  must evaluate to true, which means that  satisfies this clause. Therefore  satisfies all clauses of , which is the definition of a satisfying assignment.
This completes the proof of isetnpc
[bookmark: threesattoisfig][image: ../figure/3sat2ISreduction.png]
The reduction of 3SAT to Independent Set. On the right-hand side is Python code that implements this reduction. On the left-hand side is a sample output of the reduction. We use black for the “triangle edges” and red for the “conflict edges”. Note that the satisfying assignment  corresponds to the independent set , , .
[bookmark: Xb1dd8080d955ea99dd9ac01d0aedf1e06634d42]Some exercises and anatomy of a reduction.
Reductions can be confusing and working out exercises is a great way to gain more comfort with them. Here is one such example. As usual, I recommend you try it out yourself before looking at the solution.
A vertex cover in a graph  is a subset  of vertices such that every edge touches at least one vertex of  (see smallvertexcoverfig). The vertex cover problem is the task to determine, given a graph  and a number , whether there exists a vertex cover in the graph with at most  vertices. Formally, this is the function  such that for every  and ,  if and only if there exists a vertex cover  such that .
Prove that .
[bookmark: smallvertexcoverfig][image: ../figure/vertex_cover.png]
A vertex cover in a graph is a subset of vertices that touches all edges. In this -vertex graph, the  filled vertices are a vertex cover.
The key observation is that if  is a vertex cover that touches all vertices, then there is no edge  such that both ’s endpoints are in the set , and vice versa. In other words,  is a vertex cover if and only if  is an independent set. Since the size of  is , we see that the polynomial-time map  (where  is the number of vertices of ) satisfies that  which means that it is a reduction from independent set to vertex cover.
The maximum clique problem corresponds to the function  such that for a graph  and a number ,  iff there is a subset  of  vertices such that for every distinct , the edge  is in . Such a set is known as a clique.
Prove that  and .
If  is a graph, we denote by  its complement which is the graph on the same vertices  and such that for every distinct , the edge  is present in  if and only if this edge is not present in .
This means that for every set ,  is an independent set in  if and only if  is a clique in . Therefore for every , . Since the map  can be computed efficiently, this yields a reduction . Moreover, since  this yields a reduction in the other direction as well.
[bookmark: dominating-set]Dominating set
In the two examples above, the reduction was almost “trivial”: the reduction from independent set to vertex cover merely changes the number  to , and the reduction from independent set to clique flips edges to non-edges and vice versa. The following exercise requires a somewhat more interesting reduction.
A dominating set in a graph  is a subset  of vertices such that every  is a neighbor in  of some  (see dominatingvertexcover). The dominating set problem is the task, given a graph  and number , of determining whether there exists a dominating set  with . Formally, this is the function  such that  iff there is a dominating set in  of at most  vertices.
Prove that .
[bookmark: dominatingvertexcover][image: ../figure/dominatingvc.png]
A dominating set is a subset  of vertices such that every vertex in the graph is either in  or a neighbor of . The figure above are two copies of the same graph. The red vertices on the left are a vertex cover that is not a dominating set. The blue vertices on the right are a dominating set that is not a vertex cover.
Since we know that , using transitivity, it is enough to show that . As dominatingvertexcover shows, a dominating set is not the same thing as a vertex cover. However, we can still relate the two problems. The idea is to map a graph  into a graph  such that a vertex cover in  would translate into a dominating set in  and vice versa. We do so by including in  all the vertices and edges of , but for every edge  of  we also add to  a new vertex  and connect it to both  and . Let  be the number of isolated vertices in . The idea behind the proof is that we can transform a vertex cover  of  vertices in  into a dominating set of  vertices in  by adding to  all the isolated vertices, and moreover we can transform every -sized dominating set in  into a vertex cover in . We now give the details.
Description of the algorithm. Given an instance  for the vertex cover problem, we will map  into an instance  for the dominating set problem as follows (see vctodsreductionfig for Python implementation):
INPUT: Graph $G=(V,E)$ and number $k$.

OUTPUT: Graph $H=(V',E')$ and number $k'$, such that $G$ has a vertex cover of size $k$ iff $H$ has a dominating set of size $k'$, that is, $DS(H,k') = VC(G,k)$.

Initialize $V' \leftarrow V, E' \leftarrow E$
For {every edge $\{u,v\} \in E$}
  Add vertex $w_{u,v}$ to $V'$
  Add edges $\{ u, w_{u,v} \}$, $\{ v, w_{u,v} \}$  to $E'$.
endfor
Let $\ell \leftarrow$ number of isolated vertices in $G$
return $( H=(V',E') \;,\;  k+\ell)$
independentsettodsredalg runs in polynomial time, since the loop takes  steps where  is the number of edges, with each step can be implemented in constant or at most linear time (depending on the representation of the graph ). Counting the number of isolated vertices in an  vertex graph  can be done in time  if  is represented in the adjacency matrix representation and  time if it is represented in the adjacency list representation. Regardless the algorithm runs in polynomial time.
To complete the proof we need to prove that for every , if  is the output of independentsettodsredalg on input , then . We split the proof into two parts. The completeness part is that if  then . The soundness part is that if  then .
Completeness. Suppose that . Then there is a vertex cover  of at most  vertices. Let  be the set of isolated vertices in  and  be their number. Then . We claim that  is a dominating set in . Indeed for every vertex  of  there are three cases:
· Case 1:  is an isolated vertex of . In this case  is in .
· Case 2:  is a non-isolated vertex of  and hence there is an edge  of  for some . In this case since  is a vertex cover, one of  has to be in , and hence either  or a neighbor of  has to be in .
· Case 3:  is of the form  for some two neighbors  in . But then since  is a vertex cover, one of  has to be in  and hence  contains a neighbor of .
We conclude that  is a dominating set of size at most  in  and hence under the assumption that , .
Soundness. Suppose that . Then there is a dominating set  of size at most  in . For every edge  in the graph , if  contains the vertex  then we remove this vertex and add  in its place. The only two neighbors of  are  and , and since  is a neighbor of both  and of , replacing  with  maintains the property that it is a dominating set. Moreover, this change cannot increase the size of . Thus following this modification, we can assume that  is a dominating set of at most  vertices that does not contain any vertices of the form .
Let  be the set of isolated vertices in . These vertices are also isolated in  and hence must be included in  (an isolated vertex must be in any dominating set, since it has no neighbors). We let . Then . We claim that  is a vertex cover in . Indeed, for every edge  of , either the vertex  or one of its neighbors must be in  by the dominating set property. But since we ensured  doesn’t contain any of the vertices of the form , it must be the case that either  or  is in . This shows that  is a vertex cover of  of size at most , hence proving that .
A corollary of independentsettodsredalg and the other reduction we have seen so far is that if  (i.e., dominating set has a polynomial-time algorithm) then  (i.e.,  has a polynomial-time algorithm). By the contra-positive, if  does not have a polynomial-time algorithm then neither does dominating set.
[bookmark: vctodsreductionfig][image: ../figure/vctodsreduction.png]
Python implementation of the reduction from vertex cover to dominating set, together with an example of an input graph and the resulting output graph. This reduction allows to transform a hypothetical polynomial-time algorithm for dominating set (a “whistling pig”) into a hypothetical polynomial-time algorithm for vertex-cover (a “flying horse”).
[bookmark: anatomy-of-a-reduction]Anatomy of a reduction
[bookmark: reductionanatomyfig][image: ../figure/reductionanatomy.png]
The four components of a reduction, illustrated for the particular reduction of vertex cover to dominating set. A reduction from problem  to problem  is an algorithm that maps an input  for  into an input  for . To show that the reduction is correct we need to show the properties of efficiency: algorithm  runs in polynomial time, completeness: if  then , and soundness: if  then .
The reduction of dominatingsetex gives a good illustration of the anatomy of a reduction. A reduction consists of four parts:
· Algorithm description: This is the description of how the algorithm maps an input into the output. For example, in dominatingsetex this is the description of how we map an instance  of the vertex cover problem into an instance  of the dominating set problem.
· Algorithm analysis: It is not enough to describe how the algorithm works but we need to also explain why it works. In particular we need to provide an analysis explaining why the reduction is both efficient (i.e., runs in polynomial time) and correct (satisfies that  for every ). Specifically, the components of analysis of a reduction  include:
· Efficiency: We need to show that  runs in polynomial time. In most reductions we encounter this part is straightforward, as the reductions we typically use involve a constant number of nested loops, each involving a constant number of operations. For example, the reduction of dominatingsetex just enumerates over the edges and vertices of the input graph.
· Completeness: In a reduction  demonstrating , the completeness condition is the condition that for every , if  then . Typically we construct the reduction to ensure that this holds, by giving a way to map a “certificate/solution” certifying that  into a solution certifying that . For example, in dominatingsetex we constructed the graph  such that for every vertex cover  in , the set  (where  is the isolated vertices) would be a dominating set in .
· Soundness: This is the condition that if  then  or (taking the contrapositive) if  then . This is sometimes straightforward but can often be harder to show than the completeness condition, and in more advanced reductions (such as the reduction  of isetnpc) demonstrating soundness is the main part of the analysis. For example, in dominatingsetex to show soundness we needed to show that for every dominating set  in the graph , there exists a vertex cover  of size at most  in the graph  (where  is the number of isolated vertices). This was challenging since the dominating set  might not be necessarily the one we “had in mind”. In particular, in the proof above we needed to modify  to ensure that it does not contain vertices of the form , and it was important to show that this modification still maintains the property that  is a dominating set, and also does not make it bigger.
Whenever you need to provide a reduction, you should make sure that your description has all these components. While it is sometimes tempting to weave together the description of the reduction and its analysis, it is usually clearer if you separate the two, and also break down the analysis to its three components of efficiency, completeness, and soundness.
[bookmark: reducing-independent-set-to-maximum-cut]Reducing Independent Set to Maximum Cut
We now show that the independent set problem reduces to the maximum cut (or “max cut”) problem, modeled as the function  that on input a pair  outputs  iff  contains a cut of at least  edges. Since both are graph problems, a reduction from independent set to max cut maps one graph into the other, but as we will see the output graph does not have to have the same vertices or edges as the input graph.
[bookmark: isettomaxcut]

[bookmark: section-5]
We will map a graph  into a graph  such that a large independent set in  becomes a partition cutting many edges in . We can think of a cut in  as coloring each vertex either “blue” or “red”. We will add a special “source” vertex , connect it to all other vertices, and assume without loss of generality that it is colored blue. Hence the more vertices we color red, the more edges from  we cut. Now, for every edge  in the original graph  we will add a special “gadget” which will be a small subgraph that involves ,, the source , and two other additional vertices. We design the gadget in a way so that if the red vertices are not an independent set in  then the corresponding cut in  will be “penalized” in the sense that it would not cut as many edges. Once we set for ourselves this objective, it is not hard to find a gadget that achieves it see the proof below. Once again the takeaway technique is to use (this time a slightly more clever) gadget.
[bookmark: iset2maxcutoverviewfig][image: ../figure/iset2maxcutoverview.png]
In the reduction of  to  we map an -vertex -edge graph  into the  vertex and  edge graph  as follows. The graph  contains a special “source” vertex , vertices , and  vertices  with each pair corresponding to an edge of . We put an edge between  and  for every , and if the -th edge of  was  then we add the five edges . The intent is that if we cut at most one of  from  then we’ll be able to cut  out of these five edges, while if we cut both  and  from  then we’ll be able to cut at most three of them.
We will transform a graph  of  vertices and  edges into a graph  of  vertices and  edges in the following way (see also iset2maxcutoverviewfig). The graph  contains all vertices of  (though not the edges between them!) and in addition  also has:
* A special vertex  that is connected to all the vertices of 
* For every edge , two vertices  such that  is connected to  and  is connected to , and moreover we add the edges  to .
isettomaxcut will follow by showing that  contains an independent set of size at least  if and only if  has a cut cutting at least  edges. We now prove both directions of this equivalence:
Part 1: Completeness. If  is an independent -sized set in , then we can define  to be a cut in  of the following form: we let  contain all the vertices of  and for every edge , if  and  then we add  to ; if  and  then we add  to ; and if  and  then we add both  and  to . (We don’t need to worry about the case that both  and  are in  since it is an independent set.) We can verify that in all cases the number of edges from  to its complement in the gadget corresponding to  will be four (see ISETtoMAXCUTfig). Since  is not in , we also have  edges from  to , for a total of  edges.
Part 2: Soundness. Suppose that  is a cut in  that cuts at least  edges. We can assume that  is not in  (otherwise we can “flip”  to its complement , since this does not change the size of the cut). Now let  be the set of vertices in  that correspond to the original vertices of . If  was an independent set of size  then we would be done. This might not always be the case but we will see that if  is not an independent set then it’s also larger than . Specifically, we define  be the set of edges in  that are contained in  and let  (i.e., if  is an independent set then  and ). By the properties of our gadget we know that for every edge  of , we can cut at most three edges when both  and  are in , and at most four edges otherwise. Hence the number  of edges cut by  satisfies . Since  we get that . Now we can transform  into an independent set  by going over every one of the  edges that are inside  and removing one of the endpoints of the edge from it. The resulting set  is an independent set in the graph  of size  and so this concludes the proof of the soundness condition.
[bookmark: ISETtoMAXCUTfig][image: ../figure/iset2maxcutgadgetanalysis.png]
In the reduction of independent set to max cut, for every , we have a “gadget” corresponding to the -th edge  in the original graph. If we think of the side of the cut containing the special source vertex  as “white” and the other side as “blue”, then the leftmost and center figures show that if  and  are not both blue then we can cut four edges from the gadget. In contrast, by enumerating all possibilities one can verify that if both  and  are blue, then no matter how we color the intermediate vertices , we will cut at most three edges from the gadget. The figure above contains only the gadget edges and ignores the edges connecting  to the vertices .
[bookmark: isettomaxcutcodefig][image: ../figure/is2maxcut.png]
The reduction of independent set to max cut. On the right-hand side is Python code implementing the reduction. On the left-hand side is an example output of the reduction where we apply it to the independent set instance that is obtained by running the reduction of isetnpc on the 3CNF formula .
[bookmark: reducing-3sat-to-longest-path]Reducing 3SAT to Longest Path
Note: This section is still a little messy; feel free to skip it or just read it without going into the proof details. The proof appears in Section 7.5 in Sipser’s book.
One of the most basic algorithms in Computer Science is Dijkstra’s algorithm to find the shortest path between two vertices. We now show that in contrast, an efficient algorithm for the longest path problem would imply a polynomial-time algorithm for 3SAT.
[bookmark: longpaththm]

[bookmark: longpathfig][image: ../figure/3sat_longest_path_red_without_path.png]
We can transform a 3SAT formula  into a graph  such that the longest path in the graph  would correspond to a satisfying assignment in . In this graph, the black colored part corresponds to the variables of  and the blue colored part corresponds to the vertices. A sufficiently long path would have to first “snake” through the black part, for each variable choosing either the “upper path” (corresponding to assigning it the value True) or the “lower path” (corresponding to assigning it the value False). Then to achieve maximum length the path would traverse through the blue part, where to go between two vertices corresponding to a clause such as , the corresponding vertices would have to have been not traversed before.
[bookmark: longpathfigtwo][image: ../figure/3sat_to_longest_path_reduction.png]
The graph above with the longest path marked on it, the part of the path corresponding to variables is in green and part corresponding to the clauses is in pink.
[bookmark: section-6]
To prove longpaththm need to show how to transform a 3CNF formula  into a graph  and two vertices  such that  has a path of length at least  if and only if  is satisfiable. The idea of the reduction is sketched in longpathfig and longpathfigtwo. We will construct a graph that contains a potentially long “snaking path” that corresponds to all variables in the formula. We will add a “gadget” corresponding to each clause of  in a way that we would only be able to use the gadgets if we have a satisfying assignment.
def TSAT2LONGPATH(φ):
    """Reduce 3SAT to LONGPATH"""
    def var(v): # return variable and True/False depending if positive or negated
        return int(v[2:]),False if v[0]=="¬" else int(v[1:]),True
    n = numvars(φ)
    clauses = getclauses(φ)
    m = len(clauses)
    G =Graph() 
    G.edge("start","start_0")
    for i in range(n): # add 2 length-m paths per variable
        G.edge(f"start_{i}",f"v_{i}_{0}_T")
        G.edge(f"start_{i}",f"v_{i}_{0}_F")
        for j in range(m-1): 
            G.edge(f"v_{i}_{j}_T",f"v_{i}_{j+1}_T")
            G.edge(f"v_{i}_{j}_F",f"v_{i}_{j+1}_F")
        G.edge(f"v_{i}_{m-1}_T",f"end_{i}")
        G.edge(f"v_{i}_{m-1}_F",f"end_{i}")
        if i<n-1:
            G.edge(f"end_{i}",f"start_{i+1}")
    G.edge(f"end_{n-1}","start_clauses")
    for j,C in enumerate(clauses): # add gadget for each clause
        for v in enumerate(C):
            i,sign = var(v[1])
            s = "F" if sign else "T"
            G.edge(f"C_{j}_in",f"v_{i}_{j}_{s}")
            G.edge(f"v_{i}_{j}_{s}",f"C_{j}_out")
        if j<m-1:
            G.edge(f"C_{j}_out",f"C_{j+1}_in")
    G.edge("start_clauses","C_0_in")
    G.edge(f"C_{m-1}_out","end")
    return G, 1+n*(m+1)+1+2*m+1
We build a graph  that “snakes” from  to  as follows. After  we add a sequence of  long loops. Each loop has an “upper path” and a “lower path”. A simple path cannot take both the upper path and the lower path, and so it will need to take exactly one of them to reach  from .
Our intention is that a path in the graph will correspond to an assignment  in the sense that taking the upper path in the  loop corresponds to assigning  and taking the lower path corresponds to assigning . When we are done snaking through all the  loops corresponding to the variables to reach  we need to pass through  “obstacles”: for each clause  we will have a small gadget consisting of a pair of vertices  that have three paths between them. For example, if the  clause had the form  then one path would go through a vertex in the lower loop corresponding to , one path would go through a vertex in the upper loop corresponding to  and the third would go through the lower loop corresponding to . We see that if we went in the first stage according to a satisfying assignment then we will be able to find a free vertex to travel from  to . We link  to ,  to , etc and link  to . Thus a satisfying assignment would correspond to a path from  to  that goes through one path in each loop corresponding to the variables, and one path in each loop corresponding to the clauses. We can make the loop corresponding to the variables long enough so that we must take the entire path in each loop in order to have a fighting chance of getting a path as long as the one corresponds to a satisfying assignment. But if we do that, then the only way if we are able to reach  is if the paths we took corresponded to a satisfying assignment, since otherwise we will have one clause  where we cannot reach  from  without using a vertex we already used before.
[bookmark: threesattwolongpathfig][image: ../figure/3sat2longpath.png]
The result of applying the reduction of  to  to the formula .
[bookmark: summary-of-relations]Summary of relations
We have shown that there are a number of functions  for which we can prove a statement of the form “If  then ”. Hence coming up with a polynomial-time algorithm for even one of these problems will entail a polynomial-time algorithm for  (see for example reductiondiagramfig). In cooklevinchap we will show the inverse direction (“If  then ”) for these functions, hence allowing us to conclude that they have equivalent complexity to .
[bookmark: reductiondiagramfig][image: ../figure/reduction_inc_diagram.png]
So far we have shown that  and that several problems we care about such as  and  are in  but it is not known whether or not they are in . However, since  we can rule out the possiblity that  but . The relation of  to the class  is not known. We know that  does not contain  since the latter even contains uncomputable functions, but we do not know whether ot not  (though it is believed that this is not the case and in particular that both  and  are not in ).
· The computational complexity of many seemingly unrelated computational problems can be related to one another through the use of reductions.
· If  then a polynomial-time algorithm for  can be transformed into a polynomial-time algorithm for .
· Equivalently, if  and  does not have a polynomial-time algorithm then neither does .
· We’ve developed many techniques to show that  for interesting functions . Sometimes we can do so by using transitivity of reductions: if  and  then .
[bookmark: exercises]Exercises
[bookmark: reductionsbibnotes]Bibliographical notes
Several notions of reductions are defined in the literature. The notion defined in reduction-def is often known as a mapping reduction, many to one reduction or a Karp reduction.
The maximal (as opposed to maximum) independent set is the task of finding a “local maximum” of an independent set: an independent set  such that one cannot add a vertex to it without losing the independence property (such a set is known as a vertex cover). Unlike finding a maximum independent set, finding a maximal independent set can be done efficiently by a greedy algorithm, but this local maximum can be much smaller than the global maximum.
Reduction of independent set to max cut taken from these notes. Image of Hamiltonian Path through Dodecahedron by Christoph Sommer.
We have mentioned that the line between reductions used for algorithm design and showing hardness is sometimes blurry. An excellent example for this is the area of SAT Solvers (see [@gomes2008satisfiability]). In this field people use algorithms for SAT (that take exponential time in the worst case but often are much faster on many instances in practice) together with reductions of the form  to derive algorithms for other functions  of interest.
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def SAT2Z0E(4):
# Reduce 3SAT to 0/1 equations

n =

m
1

numvars (¢)

i in range(n): # add vars for negations
E+= f"x{subscript(i)} + x{subscript(n+i)} = 1\n"
2%*n
literals in getclauses(¢):
# map each clause to equation
def var(lit): # map literal to variable
return f"x{subscript(n+int(1lit[2:]))}" if lit[@]==
E+= " + ".join([var(lit) for lit in literals])
E+= f" + x{subscript(m)} + x{subscript(m+1)} = 3\n"
m+= 2

return Equation(E)

"-" else f"x{subscript(lit[1:])}"
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¢ = "(X0V -x3V Xx2) A (X0 V X1 V -x2) A (~x1 V x2 V x3)" # Reduction SAT to Independent Set
SAT2IS () def SAT2IS():
n = numvars(¢)

G =Graph() #(engine="neato’)
@ ° def nname(c,v): return f"({c},{v})"
c=0
# nodes[literal] = vertices corresponding to this Literal

nodes = {f"x{i}":[] for i in range(n)}
° ° ° nodes.update( {f"-x{i}":[] for i in range(n)})

c=0
for C in getclauses(¢):
for u in C:

G.node(nname(c,u),f"{c},{subscript(u)}",fontsize="12")
negu = u[1:] if u[@]=="-" else "-"+u
# add conflicting edges

for v in nodes[negu]: G.edge(nname(c,u),v,color="red")
nodes[u].append(nname(c,u))

# add triangle edges
o G.edges([[nname(c,C[@]), nname(c,C[1])],[nname(c,C[1]), nname(c,C[2])],[nname(c,C[@]), nname(c,C[2])]1])
c+=1
return G
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Vertex Cover Instance Dominating Set Instance

D
@ @ ° def VC20S(G,k): e

""“Reduce vertex cover to dominating set"""
O O 1 S
G = nxgraph(G)
) for (u,v) in G.edges():

oflc S
H.edge(u,w)
H.edge(w,v)

° ° isolated = [u for u in G.nodes() if not list(G.neighbors(u)) ]

return H,k + len(isolated)
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Algorithm description:

def VC2DS(G,k):
"""Reduce vertex cover to dominating set"""
H = G.copy()
G = nxgraph(G)
for (u,v) in G.edges():
w = fru{u}-{v}"
H.edge(u,w)
H.edge(w,v)
isolated = [u for u in G.nodes() if not list(G.neighbors(u)) ]
return H,k + len(isolated)
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# Reduction IS to MAXCUT
def IS2MAXCUT(G):
G =nxgraph(G)
H =Graph(engine="sfdp")
s ="source"
H.node(s) # create source node

for v in G.nodes():
H.node(v,shape="square")
H.edge(s,V)

j =0
for (u,v) in G.edges():

gl = "e"+str(j)+"a"

g2 = "e"+str(j)+"b"

H.node(gl,label=u+"-"+v)
.node(g2,label=u+"-"+v)
add gadget
.edges([(s,81),(s,82),(gl,82),(u,81),(v,82)])
+=1

O % I

return H
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