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· More examples of uncomputable functions that are not as tied to computation.
· Gödel’s incompleteness theorem - a result that shook the world of mathematics in the early 20th century.
“Take any definite unsolved problem, such as … the existence of an infinite number of prime numbers of the form . However unapproachable these problems may seem to us and however helpless we stand before them, we have, nevertheless, the firm conviction that their solution must follow by a finite number of purely logical processes…”
“…This conviction of the solvability of every mathematical problem is a powerful incentive to the worker. We hear within us the perpetual call: There is the problem. Seek its solution. You can find it by pure reason, for in mathematics there is no ignorabimus.”, David Hilbert, 1900.
“The meaning of a statement is its method of verification.”, Moritz Schlick, 1938 (aka “The verification principle” of logical positivism)
The problems shown uncomputable in chapcomputable, while natural and important, still intimately involved NAND-TM programs or other computing mechanisms in their definitions. One could perhaps hope that as long as we steer clear of functions whose inputs are themselves programs, we can avoid the “curse of uncomputability”. Alas, we have no such luck.
In this chapter we will see an example of a natural and seemingly “computation free” problem that nevertheless turns out to be uncomputable: solving Diophantine equations. As a corollary, we will see one of the most striking results of 20th century mathematics: Gödel’s Incompleteness Theorem, which showed that there are some mathematical statements (in fact, in number theory) that are inherently unprovable. We will actually start with the latter result, and then show the former.
The marquee result of this chapter is Gödel’s Incompleteness Theorem, which states that for every proof system, there are some statements about arithmetic that are true but unprovable in this system. But more than that we will see a deep connection between uncomputability and unprovability. For example, the uncomputability of the Halting problem immediately gives rise to the existence of unprovable statements about Turing machines. To even state Gödel’s Incompleteness Theorem we will need to formally define the notion of a “proof system”. We give a very general definition, that encompasses all types of “axioms + inference rules” systems used in logic and math. We will then build up the machinery to encode computation using arithmetic that will enable us to prove Gödel’s Theorem.
[bookmark: godelstructurefig][image: ../figure/godelstructure.png]
Outline of the results of this chapter. One version of Gödel’s Incompleteness Theorem is an immediate consequence of the uncomputability of the Halting problem. To obtain the theorem as originally stated (for statements about the integers) we first prove that the  problem of determining truth of quantified statements involving both integers and strings is uncomputable. We do so using the notion of Turing Machine configurations but there are alternative approaches to do so as well, see alternativeproofs.
[bookmark: godelproofdef]Hilbert’s Program and Gödel’s Incompleteness Theorem
“And what are these …vanishing increments? They are neither finite quantities, nor quantities infinitely small, nor yet nothing. May we not call them the ghosts of departed quantities?”, George Berkeley, Bishop of Cloyne, 1734.
The 1700’s and 1800’s were a time of great discoveries in mathematics but also of several crises. The discovery of calculus by Newton and Leibnitz in the late 1600’s ushered a golden age of problem solving. Many longstanding challenges succumbed to the new tools that were discovered, and mathematicians got ever better at doing some truly impressive calculations. However, the rigorous foundations behind these calculations left much to be desired. Mathematicians manipulated infinitesimal quantities and infinite series cavalierly, and while most of the time they ended up with the correct results, there were a few strange examples (such as trying to calculate the value of the infinite series ) which seemed to give out different answers depending on the method of calculation. This led to a growing sense of unease in the foundations of the subject which was addressed in the works of mathematicians such as Cauchy, Weierstrass, and Riemann, who eventually placed analysis on firmer foundations, giving rise to the ’s and ’s that students taking honors calculus grapple with to this day.
In the beginning of the 20th century, there was an effort to replicate this effort, in greater rigor, to all parts of mathematics. The hope was to show that all the true results of mathematics can be obtained by starting with a number of axioms, and deriving theorems from them using logical rules of inference. This effort was known as the Hilbert program, named after the influential mathematician David Hilbert.
Alas, it turns out the results we’ve seen dealt a devastating blow to this program, as was shown by Kurt Gödel in 1931:
[bookmark: godethminformal]
For every sound proof system  for sufficiently rich mathematical statements, there is a mathematical statement that is true but is not provable in .
[bookmark: godelproofsystemssec]Defining “Proof Systems”
Before proving godethminformal, we need to define “proof systems” and even formally define the notion of a “mathematical statement”. In geometry and other areas of mathematics, proof systems are often defined by starting with some basic assumptions or axioms and then deriving more statements by using inference rules such as the famous Modus Ponens, but what axioms shall we use? What rules? We will use an extremely general notion of proof systems, not even restricting ourselves to ones that have the form of axioms and inference.
Mathematical statements. At the highest level, a mathematical statement is simply a piece of text, which we can think of as a string . Mathematical statements contain assertions whose truth does not depend on any empirical fact, but rather only on properties of abstract objects. For example, the following is a mathematical statement:[footnoteRef:29] [29:  This happens to be a false statement.] 

“The number ,,,,,,,,,,, ,,,,,,,,,, is prime”.
Mathematical statements do not have to involve numbers. They can assert properties of any other mathematical object including sets, strings, functions, graphs and yes, even programs. Thus, another example of a mathematical statement is the following:[footnoteRef:30] [30:  It is unknown whether this statement is true or false.] 

The following Python function halts on every positive integer n
def f(n):
    if n==1: return 1
    return f(3*n+1) if n % 2 else f(n//2)


Proof systems. A proof for a statement  is another piece of text  that certifies the truth of the statement asserted in . The conditions for a valid proof system are:
1. (Effectiveness) Given a statement  and a proof , there is an algorithm to verify whether or not  is a valid proof for . (For example, by going line by line and checking that each line follows from the preceding ones using one of the allowed inference rules.)
1. (Soundness) If there is a valid proof  for  then  is true.
These are quite minimal requirements for a proof system. Requirement 2 (soundness) is the very definition of a proof system: you shouldn’t be able to prove things that are not true. Requirement 1 is also essential. If there is no set of rules (i.e., an algorithm) to check that a proof is valid then in what sense is it a proof system? We could replace it with a system where the “proof” for a statement  is “trust me: it’s true”.
We formally define proof systems as an algorithm  where  holds if the string  is a valid proof for the statement . Even if  is true, the string  does not have to be a valid proof for it (there are plenty of wrong proofs for true statements such as 4=2+2) but if  is a valid proof for  then  must be true.
Let  be some set (which we consider the “true” statements). A proof system for  is an algorithm  that satisfies:
1. (Effectiveness) For every ,  halts with an output of either  or .
1. (Soundness) For every  and , .
A true statement  is unprovable (with respect to ) if for every , . We say that  is complete if there does not exist a true statement  that is unprovable with respect to .
A proof is just a string of text whose meaning is given by a verification algorithm.
[bookmark: X0c2b30b36d38fe1156298ea8a78256bafd3927c]Gödel’s Incompleteness Theorem: Computational variant
Our first formalization of godethminformal involves statements about Turing machines. We let  be the set of strings  that have the form “Turing machine  does not halt on the zero input”.
There does not exist a complete proof system for .
[bookmark: section-1]
If we had such a complete and sound proof system then we could solve the  problem. On input a Turing machine , we would in parallel run the machine on the input zero, as well as search all purported proofs  and output  if we find a proof of “ does not halt on zero”. If the system is sound and complete then either the machine will halt or we will eventually find such a proof, and it will provide us with the correct output.
Assume for the sake of contradiction that there was such a proof system . We will use  to build an algorithm  that computes , hence contradicting haltonzero-thm. Our algorithm  will work as follows:
INPUT: Turing machine $M$
OUTPUT:  $1$  $M$ -if halts on -input $0$;  $0$ otherwise.

for{$n=1,2,3,\ldots$}
    for{$w\in \{0,1\}^n$}
       if{$V($"$M$ does not halt on $0$"$,w)=1$}
         return $0$
       endif
       Simulate $M$ -for $n$ steps on $0$.
       if{$M$ halts}
         return $1$
       endif
    endfor
endfor
If  halts on zero within  steps, then by the soundness of the proof system, there will not exist a proof for “ does not halt on ” on so we will never return . By the time time we get to  in the loop, we will simulate  for  steps and so return . On the hand, if  does not halt on , then we will never return . Because the proof system is complete, there exists  that proves this fact, and so when Algorithm  reaches  we will eventually find this  and output . Hence under the assumption that the proof system is complete and sound,  solves the  function, yielding a contradiction.
One can extract from the proof of godethmtakeone a procedure that for every proof system , yields a true statement  that cannot be proven in . But Gödel’s proof gave a very explicit description of such a statement  which is closely related to the “Liar’s paradox”. That is, Gödel’s statement  was designed to be true if and only if . In other words, it satisfied the following property

One can see that if  is true, then it does not have a proof, but if it is false then (assuming the proof system is sound) then it cannot have a proof, and hence  must be both true and unprovable. One might wonder how is it possible to come up with an  that satisfies a condition such as godeleq where the same string  appears on both the right-hand side and the left-hand side of the equation. The idea is that the proof of godethmtakeone yields a way to transform every statement  into a statement  that is true if and only if  does not have a proof in . Thus  needs to be a fixed point of : a sentence such that . It turns out that we can always find such a fixed point of . We’ve already seen this phenomenon in the  calculus, where the  combinator maps every  into a fixed point  of . This is very related to the idea of programs that can print their own code. Indeed, Scott Aaronson likes to describe Gödel’s statement as follows:
The following sentence repeated twice, the second time in quotes, is not provable in the formal system . “The following sentence repeated twice, the second time in quotes, is not provable in the formal system .”
In the argument above we actually showed that  is true, under the assumption that  is sound. Since  is true and does not have a proof in , this means that we cannot carry the above argument in the system , which means that  cannot prove its own soundness (or even consistency: that there is no proof of both a statement and its negation). Using this idea, it’s not hard to get Gödel’s second incompleteness theorem, which says that every sufficiently rich  cannot prove its own consistency. That is, if we formalize the statement  that is true if and only if  is consistent (i.e.,  cannot prove both a statement and the statement’s negation), then  cannot be proven in .
[bookmark: quantified-integer-statements]Quantified integer statements
There is something “unsatisfying” about godethmtakeone. Sure, it shows there are statements that are unprovable, but they don’t feel like “real” statements about math. After all, they talk about programs rather than numbers, matrices, or derivatives, or whatever it is they teach in math courses. It turns out that we can get an analogous result for statements such as “there are no positive integers  and  such that ”, or “there are positive integers  such that ” that only talk about natural numbers. It doesn’t get much more “real math” than this. Indeed, the 19th century mathematician Leopold Kronecker famously said that “God made the integers, all else is the work of man.” (By the way, the status of the above two statements is unknown.)
To make this more precise, let us define the notion of quantified integer statements:
[bookmark: QIS-def]
A quantified integer statement is a well-formed statement with no unbound variables involving integers, variables, the operators , the logical operations  (NOT),  (AND), and  (OR), as well as quantifiers of the form  and  where  are variable names.
We often care deeply about determining the truth of quantified integer statements. For example, the statement that Fermat’s Last Theorem is true for  can be phrased as the quantified integer statement

The twin prime conjecture, that states that there is an infinite number of numbers  such that both  and  are primes can be phrased as the quantified integer statement

where we replace an instance of  with the statement .
The claim (mentioned in Hilbert’s quote above) that are infinitely many primes of the form  can be phrased as follows:

where  is the statement . In English, this corresponds to the claim that for every  there is some  such that all of ’s prime factors are equal to .
To make our statements more readable, we often use syntactic sugar and so write  as shorthand for , and so on. Similarly, the “implication operator”  is “syntactic sugar” or shorthand for , and the “if and only if operator”  is shorthand for ). We will also allow ourselves the use of “macros”: plugging in one quantified integer statement in another, as we did with  and  above.
Much of number theory is concerned with determining the truth of quantified integer statements. Since our experience has been that, given enough time (which could sometimes be several centuries) humanity has managed to do so for the statements that it cared enough about, one could (as Hilbert did) hope that eventually we would be able to prove or disprove all such statements. Alas, this turns out to be impossible:
Let  a computable purported verification procedure for quantified integer statements. Then either:
·  is not sound: There exists a false statement  and a string  such that .
or
·  is not complete: There exists a true statement  such that for every , .
godelthmqis is a direct corollary of the following result, just as godethmtakeone was a direct corollary of the uncomputability of :
[bookmark: QIS-thm]
Let  be the function that given a (string representation of) a quantified integer statement outputs  if it is true and  if it is false. Then  is uncomputable.
Since a quantified integer statement is simply a sequence of symbols, we can easily represent it as a string. For simplicity we will assume that every string represents some quantified integer statement, by mapping strings that do not correspond to such a statement to an arbitrary statement such as .
Please stop here and make sure you understand why the uncomputability of  (i.e., QIS-thm) means that there is no sound and complete proof system for proving quantified integer statements (i.e., godelthmqis). This follows in the same way that godethmtakeone followed from the uncomputability of , but working out the details is a great exercise (see godelfromqisex)
In the rest of this chapter, we will show the proof of godelthmqis, following the outline illustrated in godelstructurefig.
[bookmark: X6372aae79f22f0a6b7ae87a16cd042c6d434847]Diophantine equations and the MRDP Theorem
Many of the functions people wanted to compute over the years involved solving equations. These have a much longer history than mechanical computers. The Babylonians already knew how to solve some quadratic equations in 2000BC, and the formula for all quadratics appears in the Bakhshali Manuscript that was composed in India around the 3rd century. During the Renaissance, Italian mathematicians discovered generalization of these formulas for cubic and quartic (degrees  and ) equations. Many of the greatest minds of the 17th and 18th century, including Euler, Lagrange, Leibniz and Gauss worked on the problem of finding such a formula for quintic equations to no avail, until in the 19th century Ruffini, Abel and Galois showed that no such formula exists, along the way giving birth to group theory.
However, the fact that there is no closed-form formula does not mean we can not solve such equations. People have been solving higher degree equations numerically for ages. The Chinese manuscript Jiuzhang Suanshu from the first century mentions such approaches. Solving polynomial equations is by no means restricted only to ancient history or to students’ homework. The gradient descent method is the workhorse powering many of the machine learning tools that have revolutionized Computer Science over the last several years.
[bookmark: ellipticcurvefig][image: ../figure/elliptic_curve.png]
Diophantine equations such as finding a positive integer solution to the equation  (depicted more compactly and whimsically above) can be surprisingly difficult. There are many equations for which we do not know if they have a solution, and there is no algorithm to solve them in general. The smallest solution for this equation has  digits! See this Quora post for more information, including the credits for this image.
But there are some equations that we simply do not know how to solve by any means. For example, it took more than 200 years until people succeeded in proving that the equation  has no solution in integers.[footnoteRef:56] The notorious difficulty of so called Diophantine equations (i.e., finding integer roots of a polynomial) motivated the mathematician David Hilbert in 1900 to include the question of finding a general procedure for solving such equations in his famous list of twenty-three open problems for mathematics of the 20th century. I don’t think Hilbert doubted that such a procedure exists. After all, the whole history of mathematics up to this point involved the discovery of ever more powerful methods, and even impossibility results such as the inability to trisect an angle with a straightedge and compass, or the non-existence of an algebraic formula for quintic equations, merely pointed out to the need to use more general methods. [56:  This is a special case of what’s known as “Fermat’s Last Theorem” which states that  has no solution in integers for . This was conjectured in 1637 by Pierre de Fermat but only proven by Andrew Wiles in 1991. The case  (along with all other so called “regular prime exponents”) was established by Kummer in 1850.] 

Alas, this turned out not to be the case for Diophantine equations. In 1970, Yuri Matiyasevich, building on a decades long line of work by Martin Davis, Hilary Putnam and Julia Robinson, showed that there is simply no method to solve such equations in general:
Let  be the function that takes as input a string describing a -variable polynomial with integer coefficients  and outputs  if and only if there exists  s.t. .
Then  is uncomputable.
As usual, we assume some standard way to express numbers and text as binary strings. The constant  is of course arbitrary; the problem is known to be uncomputable even for polynomials of degree four and at most 58 variables. In fact the number of variables can be reduced to nine, at the expense of the polynomial having a larger (but still constant) degree. See Jones’s paper for more about this issue.
The difficulty in finding a way to distinguish between “code” such as NAND-TM programs, and “static content” such as polynomials is just another manifestation of the phenomenon that code is the same as data. While a fool-proof solution for distinguishing between the two is inherently impossible, finding heuristics that do a reasonable job keeps many firewall and anti-virus manufacturers very busy (and finding ways to bypass these tools keeps many hackers busy as well).
[bookmark: Xd6566a9c82fe876f551e96bb950ab4276e4453a]Hardness of quantified integer statements
We will not prove the MRDP Theorem (MRDP-thm). However, as we mentioned, we will prove the uncomputability of  (i.e., QIS-thm), which is a special case of the MRDP Theorem. The reason is that a Diophantine equation is a special case of a quantified integer statement where the only quantifier is . This means that deciding the truth of quantified integer statements is a potentially harder problem than solving Diophantine equations, and so it is potentially easier to prove that  is uncomputable.
If you find the last sentence confusing, it is worthwhile to reread it until you are sure you follow its logic. We are so accustomed to trying to find solutions for problems that it can sometimes be hard to follow the arguments for showing that problems are uncomputable.
Our proof of the uncomputability of  (i.e. QIS-thm) will, as usual, go by reduction from the Halting problem, but we will do so in two steps:
1. We will first use a reduction from the Halting problem to show that deciding the truth of quantified mixed statements is uncomputable. Quantified mixed statements involve both strings and integers. Since quantified mixed statements are a more general concept than quantified integer statements, it is easier to prove the uncomputability of deciding their truth.
1. We will then reduce the problem of quantified mixed statements to quantified integer statements.
[bookmark: X8715750777b4289af34991adb9cb6176aace097]Step 1: Quantified mixed statements and computation histories
We define quantified mixed statements as statements involving not just integers and the usual arithmetic operators, but also string variables as well.
A quantified mixed statement is a well-formed statement with no unbound variables involving integers, variables, the operators , the logical operations  (NOT),  (AND), and  (OR), as well as quantifiers of the form , , ,  where  are variable names. These also include the operator  which returns the length of a string valued variable , as well as the operator  where  is a string-valued variable and  is an integer valued expression which is true if  is smaller than the length of  and the  coordinate of  is , and is false otherwise.
For example, the true statement that for every string  there is a string  that corresponds to  in reverse order can be phrased as the following quantified mixed statement

Quantified mixed statements are more general than quantified integer statements, and so the following theorem is potentially easier to prove than QIS-thm:
[bookmark: QMS-thm]
Let  be the function that given a (string representation of) a quantified mixed statement outputs  if it is true and  if it is false. Then  is uncomputable.
[bookmark: section-2]
The idea behind the proof is similar to that used in showing that one-dimensional cellular automata are Turing complete (onedimcathm) as well as showing that equivalence (or even “fullness”) of context free grammars is uncomputable (fullnesscfgdef). We use the notion of a configuration of a NAND-TM program as in configtmdef. Such a configuration can be thought of as a string  over some large-but-finite alphabet  describing its current state, including the values of all arrays, scalars, and the index variable i. It can be shown that if  is the configuration at a certain step of the execution and  is the configuration at the next step, then  for all  outside of  where  is the value of i. In particular, every value  is simply a function of . Using these observations we can write a quantified mixed statement  that will be true if and only if  is the configuration encoding the next step after . Since a program  halts on input  if and only if there is a sequence of configurations  (known as a computation history) starting with the initial configuration with input  and ending in a halting configuration, we can define a quantified mixed statement to determine if there is such a statement by taking a universal quantifier over all strings  (for history) that encode a tuple  and then checking that  and  are valid starting and halting configurations, and that  is true for every .
The proof is obtained by a reduction from the Halting problem. Specifically, we will use the notion of a configuration of a Turing machines (configtmdef) that we have seen in the context of proving that one dimensional cellular automata are Turing complete. We need the following facts about configurations:
· For every Turing machine , there is a finite alphabet , and a configuration of  is a string .
· A configuration  encodes all the state of the program at a particular iteration, including the array, scalar, and index variables.
· If  is a configuration, then  denotes the configuration of the computation after one more iteration.  is a string over  of length either  or , and every coordinate of  is a function of just three coordinates in . That is, for every ,  where  is some function depending on .
· There are simple conditions to check whether a string  is a valid starting configuration corresponding to an input , as well as to check whether a string  is a halting configuration. In particular these conditions can be phrased as quantified mixed statements.
· A program  halts on input  if and only if there exists a sequence of configurations  such that (i)  is a valid starting configuration of  with input , (ii)  is a valid halting configuration of , and (iii)  for every .
We can encode such a sequence  of configuration as a binary string. For concreteness, we let  and encode each symbol  in $\Sigma \cup \{ ";" \}$ by a string in . We use “” as a “separator” symbol, and so encode  as the concatenation of the encodings of each configuration, using “” to separate the encoding of  and  for every . In particular for every Turing machine ,  halts on the input  if and only if the following statement  is true

If we can encode the statement  as a quantified mixed statement then, since  is true if and only if , this would reduce the task of computing  to computing , and hence imply (using haltonzero-thm ) that  is uncomputable, completing the proof. Indeed,  can be encoded as a quantified mixed statement for the following reasons:
1. Let  be two strings that encode configurations of . We can define a quantified mixed predicate  that is true if and only if  (i.e.,  encodes the configuration obtained by proceeding from  in one computational step). Indeed  is true if for every  which is a multiple of ,  where  is the finite function above (identifying elements of  with their encoding in ). Since  is a finite function, we can express it using the logical operations ,,  (for example by computing  with ’s).
1. Using the above we can now write the condition that for every substring of  that has the form  with  and  being the encoding of the separator “”, it holds that  is true.
1. Finally, if  is a binary string encoding the initial configuration of  on input , checking that the first  bits of  equal  can be expressed using ,, and ’s. Similarly checking that the last configuration encoded by  corresponds to a state in which  will halt can also be expressed as a quantified statement.
Together the above yields a computable procedure that maps every Turing machine  into a quantified mixed statement  such that  if and only if . This reduces computing  to computing , and hence the uncomputability of  implies the uncomputability of .
There are several other ways to show that  is uncomputable. For example, we can express the condition that a 1-dimensional cellular automaton eventually writes a “” to a given cell from a given initial configuration as a quantified mixed statement over a string encoding the history of all configurations. We can then use the fact that cellular automatons can simulate Turing machines (onedimcathm) to reduce the halting problem to . We can also use other well known uncomputable problems such as tiling or the post correspondence problem. postcorrespondenceproblemex and puzzleex explore two alternative proofs of QMS-thm.
[bookmark: X611f2cc94cd20d3a3ba968b9f88e9d4beb2e572]Step 2: Reducing mixed statements to integer statements
We now show how to prove QIS-thm using QMS-thm. The idea is again a proof by reduction. We will show a transformation of every quantified mixed statement  into a quantified integer statement  that does not use string-valued variables such that  is true if and only if  is true.
To remove string-valued variables from a statement, we encode every string by a pair integer. We will show that we can encode a string  by a pair of numbers  s.t.
· 
· There is a quantified integer statement  that for every , will be true if  and will be false otherwise.
This will mean that we can replace a “for all” quantifier over strings such as  with a pair of quantifiers over integers of the form  (and similarly replace an existential quantifier of the form  with a pair of quantifiers ) . We can then replace all calls to  by  and all calls to  by . This means that if we are able to define  via a quantified integer statement, then we obtain a proof of QIS-thm, since we can use it to map every mixed quantified statement  to an equivalent quantified integer statement  such that  is true if and only if  is true, and hence . Such a procedure implies that the task of computing  reduces to the task of computing , which means that the uncomputability of  implies the uncomputability of .
The above shows that proof of QIS-thm all boils down to finding the right encoding of strings as integers, and the right way to implement  as a quantified integer statement. To achieve this we use the following technical result :
[bookmark: primeseq]
There is a sequence of prime numbers  such that there is a quantified integer statement  that is true if and only if .
Using primeseq we can encode a  by the numbers  where  and . We can then define the statement  as

where , as before, is defined as . Note that indeed if  encodes the string , then for every , , since  divides  if and only if .
Thus all that is left to conclude the proof of QIS-thm is to prove primeseq, which we now proceed to do.
The sequence of prime numbers we consider is the following: We fix  to be a sufficiently large constant ( will do) and define  to be the smallest prime number that is in the interval . It is known that there exists such a prime number for every . Given this, the definition of  is simple:

We leave it to the reader to verify that  is true iff .
To sum up we have shown that for every quantified mixed statement , we can compute a quantified integer statement  such that  if and only if . Hence the uncomputability of  (QMS-thm) implies the uncomputability of , completing the proof of QIS-thm, and so also the proof of Gödel’s Incompleteness Theorem for quantified integer statements (godelthmqis).
[bookmark: section-3]
· Uncomputable functions include also functions that seem to have nothing to do with NAND-TM programs or other computational models such as determining the satisfiability of Diophantine equations.
· This also implies that for any sound proof system (and in particular every finite axiomatic system) , there are interesting statements  (namely of the form “” for an uncomputable function ) such that  is not able to prove either  or its negation.
[bookmark: exercises]Exercises
Prove godelthmqis using QIS-thm.
Let  be the following function. On input a Turing machine  (which we think of as the verifying algorithm for a proof system) and a string ,  if and only if there exists  such that .
1. Prove that  is uncomputable.
1. Prove that there exists a Turing machine  such that  halts on every input  but the function  defined as  is uncomputable. See footnote for hint.[footnoteRef:73] [73:  Hint: think of  as saying “Turing machine  halts on input ” and  being a proof that is the number of steps that it will take for this to happen. Can you find an always-halting  that will verify such statements?] 

[bookmark: floorexpressionex]
Let . Prove that  is true if and only if .
[bookmark: godelthemex]
For every representation of logical statements as strings, we can define an axiomatic proof system to consist of a finite set of strings  and a finite set of rules  with  such that a proof  that  is true is valid if for every , either  or is some  and are  such that . A system is sound if whenever there is no false  such that there is a proof that  is true. Prove that for every uncomputable function  and every sound axiomatic proof system  (that is characterized by a finite number of axioms and inference rules), there is some input  for which the proof system  is not able to prove neither that  nor that .
[bookmark: puzzleprobfig][image: ../figure/puzzleprob.png]
In the puzzle problem, the input can be thought of as a finite collection  of types of puzzle pieces and the goal is to find out whether or not find a way to arrange pieces from these types in a rectangle. Formally, we model the input as a pair of functions  that such that  (respectively  ) if the pair of pieces are compatible when placed in their respective positions. We assume  contains a special symbol  corresponding to having no piece, and an arrangement of puzzle pieces by an  rectangle is modeled by a string  whose ``outer coordinates’’ are  and such that for every ,  and .
In the Post Correspondence Problem the input is a set  where each  and  is a string in . We say that  if and only if there exists a list  of pairs in  such that

(We can think of each pair  as a “domino tile” and the question is whether we can stack a list of such tiles so that the top and the bottom yield the same string.) It can be shown that the  is uncomputable by a fairly straightforward though somewhat tedious proof (see for example the Wikipedia page for the Post Correspondence Problem or Section 5.2 in [@SipserBook]).
Use this fact to provide a direct proof that  is uncomputable by showing that there exists a computable map  such that  for every string  encoding an instance of the post correspondence problem.
Let  be the problem of determining, given a finite collection of types of “puzzle pieces”, whether it is possible to put them together in a rectangle, see puzzleprobfig. Formally, we think of such a collection as a finite set  (see puzzleprobfig). We model the criteria as to which pieces “fit together” by a pair of finite function  such that a piece  fits above a piece  if and only if  and a piece  fits to the left of a piece  if and only if . To model the “straight edge” pieces that can be placed next to a “blank spot” we assume that  contains the symbol  and the matching functions are defined accordingly. A square tiling of  is an  long string , such that for every  and ,  (i.e., every “internal pieve” fits in with the pieces adjacent to it). We also require all of the “outer pieces” (i.e.,  where  of ) are “blank” or equal to . The function  takes as input a string describing the set  and the function  and outputs  if and only if there is some square tiling of : some not all blank string  satisfying the above condition.
1. Prove that  is uncomputable.
1. Give a reduction from  to .
The MRDP theorem states that the problem of determining, given a -variable polynomial  with integer coefficients, whether there exists integers  such that  is uncomputable. Consider the following quadratic integer equation problem: the input is a list of polynomials  over  variables with integer coefficients, where each of the polynomials is of degree at most two (i.e., it is a quadratic function). The goal is to determine whether there exist integers  that solve the equations .
Use the MRDP Theorem to prove that this problem is uncomputable. That is, show that the function  is uncomputable, where this function gets as input a string describing the polynomials  (each with integer coefficients and degree at most two), and outputs  if and only if there exists  such that for every , . See footnote for hint[footnoteRef:81] [81:  You can replace the equation  with the pair of equations  and . Also, you can replace the equation  with the three equations ,  and .] 

In this question we define the NAND-TM variant of the busy beaver function.
1. We define the function  as follows: for every string , if  represents a NAND-TM program such that when  is executed on the input  (i.e., the string of length 1 that is simply ), a total of  lines are executed before the program halts, then . Otherwise (if  does not represent a NAND-TM program, or it is a program that does not halt on ), . Prove that  is uncomputable.
1. Let  denote the number  (that is, a “tower of powers of two” of height ). To get a sense of how fast this function grows, , , ,  and  which is about .  is already a number that is too big to write even in scientific notation. Define  (for “NAND-TM Busy Beaver”) to be the function  where  is the function defined in Item 1. Prove that  grows faster than , in the sense that  (i.e., for every , there exists  such that for every , .).[footnoteRef:84] [84:  You will not need to use very specific properties of the  function in this exercise. For example,  also grows faster than the Ackerman function. You might find Aaronson’s blog post on the same topic to be quite interesting, and relevant to this book at large. If you like it then you might also enjoy this piece by Terence Tao.] 

[bookmark: bibliographical-notes]Bibliographical notes
As mentioned before, Gödel, Escher, Bach [@hofstadter1999] is a highly recommended book covering Gödel’s Theorem. A classic popular science book about Fermat’s Last Theorem is [@singh1997fermat].
Cantor’s are used for both Turing and Gödel’s theorems. In a twist of fate, using techniques originating from the works of Gödel and Turing, Paul Cohen showed in 1963 that Cantor’s Continuum Hypothesis is independent of the axioms of set theory, which means that neither it nor its negation is provable from these axioms and hence in some sense can be considered as “neither true nor false” (see [@cohen2008set]). The Continuum Hypothesis is the conjecture that for every subset  of , either there is a one-to-one and onto map between  and  or there is a one-to-one and onto map between  and . It was conjectured by Cantor and listed by Hilbert in 1900 as one of the most important problems in mathematics. See also the non-conventional survey of Shelah [@shelah2003logical]. See here for recent progress on a related question.
Thanks to Alex Lombardi for pointing out an embarrassing mistake in the description of Fermat’s Last Theorem. (I said that it was open for exponent 11 before Wiles’ work.)
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