
10
Restricted computational models

“Happy families are all alike; every unhappy family is unhappy in its own
way”, Leo Tolstoy (opening of the book “Anna Karenina”).

We have seen that many models of computation are Turing equiva-
lent, including Turing machines, NAND-TM/NAND-RAM programs,
standard programming languages such as C/Python/Javascript, as
well as other models such as the 𝜆 calculus and even the game of life.
The flip side of this is that for all these models, Rice’s theorem (The-
orem 9.15) holds as well, which means that any semantic property of
programs in such a model is uncomputable.

The uncomputability of halting and other semantic specification
problems for Turing equivalent models motivates restricted com-
putational models that are (a) powerful enough to capture a set of
functions useful for certain applications but (b) weak enough that we
can still solve semantic specification problems on them. In this chapter
we discuss several such examples.

 Big Idea 14 We can use restricted computational models to bypass
limitations such as uncomputability of the Halting problem and Rice’s
Theorem. Such models can compute only a restricted subclass of
functions, but allow to answer at least some semantic questions on
programs.

10.1 TURING COMPLETENESS AS A BUG

We have seen that seemingly simple computational models or sys-
tems can turn out to be Turing complete. The following webpage lists
several examples of formalisms that “accidentally” turned out to Tur-
ing complete, including supposedly limited languages such as the C
preprocessor, CSS, (certain variants of) SQL, sendmail configuration,
as well as games such as Minecraft, Super Mario, and the card game

Compiled on 12.6.2023 00:05

Learning Objectives:
• See that Turing completeness is not always a

good thing.
• Another example of an always-halting

formalism: context-free grammars and simply
typed 𝜆 calculus.

• The pumping lemma for non context-free
functions.

• Examples of computable and uncomputable
semantic properties of regular expressions and
context-free grammars.

https://goo.gl/xRXq7p

360 introduction to theoretical computer science

Figure 10.1: Some restricted computational models.
We have already seen two equivalent restricted
models of computation: regular expressions and
deterministic finite automata. We show a more
powerful model: context-free grammars. We also
present tools to demonstrate that some functions can
not be computed in these models.

“Magic: The Gathering”. Turing completeness is not always a good
thing, as it means that such formalisms can give rise to arbitrarily
complex behavior. For example, the postscript format (a precursor of
PDF) is a Turing-complete programming language meant to describe
documents for printing. The expressive power of postscript can allow
for short descriptions of very complex images, but it also gave rise to
some nasty surprises, such as the attacks described in this page rang-
ing from using infinite loops as a denial of service attack, to accessing
the printer’s file system.

■ Example 10.1 — The DAO Hack. An interesting recent example of the
pitfalls of Turing-completeness arose in the context of the cryp-
tocurrency Ethereum. The distinguishing feature of this currency
is the ability to design “smart contracts” using an expressive (and
in particular Turing-complete) programming language. In our
current “human operated” economy, Alice and Bob might sign a
contract to agree that if condition X happens then they will jointly
invest in Charlie’s company. Ethereum allows Alice and Bob to
create a joint venture where Alice and Bob pool their funds to-
gether into an account that will be governed by some program 𝑃
that decides under what conditions it disburses funds from it. For
example, one could imagine a piece of code that interacts between
Alice, Bob, and some program running on Bob’s car that allows
Alice to rent out Bob’s car without any human intervention or
overhead.

Specifically Ethereum uses the Turing-complete programming
language solidity which has a syntax similar to JavaScript. The
flagship of Ethereum was an experiment known as The “Decen-
tralized Autonomous Organization” or The DAO. The idea was
to create a smart contract that would create an autonomously run
decentralized venture capital fund, without human managers,
where shareholders could decide on investment opportunities. The

http://hacking-printers.net/wiki/index.php/PostScript
https://www.ethereum.org/
https://solidity.readthedocs.io/en/develop/index.html
https://goo.gl/NegW77

restricted computational models 361

DAO was at the time the biggest crowdfunding success in history.
At its height the DAO was worth 150 million dollars, which was
more than ten percent of the total Ethereum market. Investing in
the DAO (or entering any other “smart contract”) amounts to pro-
viding your funds to be run by a computer program. i.e., “code
is law”, or to use the words the DAO described itself: “The DAO
is borne from immutable, unstoppable, and irrefutable computer code”.
Unfortunately, it turns out that (as we saw in Chapter 9) under-
standing the behavior of computer programs is quite a hard thing
to do. A hacker (or perhaps, some would say, a savvy investor)
was able to fashion an input that caused the DAO code to enter
into an infinite recursive loop in which it continuously transferred
funds into the hacker’s account, thereby cleaning out about 60 mil-
lion dollars out of the DAO. While this transaction was “legal” in
the sense that it complied with the code of the smart contract, it
was obviously not what the humans who wrote this code had in
mind. The Ethereum community struggled with the response to
this attack. Some tried the “Robin Hood” approach of using the
same loophole to drain the DAO funds into a secure account, but
it only had limited success. Eventually, the Ethereum community
decided that the code can be mutable, stoppable, and refutable.
Specifically, the Ethereum maintainers and miners agreed on a
“hard fork” (also known as a “bailout”) to revert history to be-
fore the hacker’s transaction occurred. Some community members
strongly opposed this decision, and so an alternative currency
called Ethereum Classic was created that preserved the original
history.

10.2 CONTEXT FREE GRAMMARS

If you have ever written a program, you’ve experienced a syntax error.
You probably also had the experience of your program entering into
an infinite loop. What is less likely is that the compiler or interpreter
entered an infinite loop while trying to figure out if your program has
a syntax error.

When a person designs a programming language, they need to
determine its syntax. That is, the designer decides which strings corre-
sponds to valid programs, and which ones do not (i.e., which strings
contain a syntax error). To ensure that a compiler or interpreter al-
ways halts when checking for syntax errors, language designers typi-
cally do not use a general Turing-complete mechanism to express their
syntax. Rather they use a restricted computational model. One of the
most popular choices for such models is context free grammars.

https://www.bloomberg.com/features/2017-the-ether-thief/
https://www.bloomberg.com/features/2017-the-ether-thief/
https://ethereumclassic.github.io/

362 introduction to theoretical computer science

To explain context free grammars, let us begin with a canonical ex-
ample. Consider the function ARITH ∶ Σ∗ → {0, 1} that takes as input
a string 𝑥 over the alphabet Σ = {(,), +, −, ×, ÷, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9}
and returns 1 if and only if the string 𝑥 represents a valid arithmetic
expression. Intuitively, we build expressions by applying an opera-
tion such as +,−,× or ÷ to smaller expressions, or enclosing them in
parentheses, where the “base case” corresponds to expressions that
are simply numbers. More precisely, we can make the following defi-
nitions:

• A digit is one of the symbols 0, 1, 2, 3, 4, 5, 6, 7, 8, 9.

• A number is a sequence of digits. (For simplicity we drop the condi-
tion that the sequence does not have a leading zero, though it is not
hard to encode it in a context-free grammar as well.)

• An operation is one of +, −, ×, ÷

• An expression has either the form “number”, the form “sub-
expression1 operation sub-expression2”, or the form “(sub-
expression1)”, where “sub-expression1” and “sub-expression2” are
themselves expressions. (Note that this is a recursive definition.)

A context free grammar (CFG) is a formal way of specifying such
conditions. A CFG consists of a set of rules that tell us how to generate
strings from smaller components. In the above example, one of the
rules is “if 𝑒𝑥𝑝1 and 𝑒𝑥𝑝2 are valid expressions, then 𝑒𝑥𝑝1 × 𝑒𝑥𝑝2 is
also a valid expression”; we can also write this rule using the short-
hand 𝑒𝑥𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛 ⇒ 𝑒𝑥𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛 × 𝑒𝑥𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛. As in the above ex-
ample, the rules of a context-free grammar are often recursive: the rule
𝑒𝑥𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛 ⇒ 𝑒𝑥𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛 × 𝑒𝑥𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛 defines valid expressions in
terms of itself. We now formally define context-free grammars:

Definition 10.2 — Context Free Grammar. Let Σ be some finite set. A
context free grammar (CFG) over Σ is a triple (𝑉 , 𝑅, 𝑠) such that:

• 𝑉 , known as the variables, is a set disjoint from Σ.

• 𝑠 ∈ 𝑉 is known as the initial variable.

• 𝑅 is a set of rules. Each rule is a pair (𝑣, 𝑧) with 𝑣 ∈ 𝑉 and
𝑧 ∈ (Σ ∪ 𝑉)∗. We often write the rule (𝑣, 𝑧) as 𝑣 ⇒ 𝑧 and say that
the string 𝑧 can be derived from the variable 𝑣.

restricted computational models 363

■ Example 10.3 — Context free grammar for arithmetic expressions. The
example above of well-formed arithmetic expressions can be cap-
tured formally by the following context free grammar:

• The alphabet Σ is {(,), +, −, ×, ÷, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9}

• The variables are 𝑉 = {𝑒𝑥𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛 , 𝑛𝑢𝑚𝑏𝑒𝑟 , 𝑑𝑖𝑔𝑖𝑡 , 𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛}.

• The rules are the set 𝑅 containing the following 19 rules:

– The 4 rules 𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛 ⇒ +, 𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛 ⇒ −, 𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛 ⇒ ×,
and 𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛 ⇒ ÷.

– The 10 rules 𝑑𝑖𝑔𝑖𝑡 ⇒ 0,…, 𝑑𝑖𝑔𝑖𝑡 ⇒ 9.
– The rule 𝑛𝑢𝑚𝑏𝑒𝑟 ⇒ 𝑑𝑖𝑔𝑖𝑡.
– The rule 𝑛𝑢𝑚𝑏𝑒𝑟 ⇒ 𝑑𝑖𝑔𝑖𝑡 𝑛𝑢𝑚𝑏𝑒𝑟.
– The rule 𝑒𝑥𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛 ⇒ 𝑛𝑢𝑚𝑏𝑒𝑟.
– The rule 𝑒𝑥𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛 ⇒ 𝑒𝑥𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛 𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛 𝑒𝑥𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛.
– The rule 𝑒𝑥𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛 ⇒ (𝑒𝑥𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛).

• The starting variable is 𝑒𝑥𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛

People use many different notations to write context free grammars.
One of the most common notations is the Backus–Naur form. In this
notation we write a rule of the form 𝑣 ⇒ 𝑎 (where 𝑣 is a variable and 𝑎
is a string) in the form <v> := a. If we have several rules of the form
𝑣 ↦ 𝑎, 𝑣 ↦ 𝑏, and 𝑣 ↦ 𝑐 then we can combine them as <v> := a|b|c.
(In words we say that 𝑣 can derive either 𝑎, 𝑏, or 𝑐.) For example, the
Backus-Naur description for the context free grammar of Example 10.3
is the following (using ASCII equivalents for operations):

operation := +|-|*|/

digit := 0|1|2|3|4|5|6|7|8|9

number := digit|digit number

expression := number|expression operation

expression|(expression)↪

Another example of a context free grammar is the “matching paren-
theses” grammar, which can be represented in Backus-Naur as fol-
lows:

match := ""|match match|(match)

A string over the alphabet { (,) } can be generated from this gram-
mar (where match is the starting expression and "" corresponds to the
empty string) if and only if it consists of a matching set of parentheses.

https://goo.gl/R4qZji

364 introduction to theoretical computer science

1 As in the case of Definition 6.7 we can also use
language rather than function notation and say that a
language 𝐿 ⊆ Σ∗ is context free if the function 𝐹 such
that 𝐹(𝑥) = 1 iff 𝑥 ∈ 𝐿 is context free.

In contrast, by Lemma 6.20 there is no regular expression that matches
a string 𝑥 if and only if 𝑥 contains a valid sequence of matching paren-
theses.

10.2.1 Context-free grammars as a computational model
We can think of a context-free grammar over the alphabet Σ as defin-
ing a function that maps every string 𝑥 in Σ∗ to 1 or 0 depending on
whether 𝑥 can be generated by the rules of the grammars. We now
make this definition formally.

Definition 10.4 — Deriving a string from a grammar. If 𝐺 = (𝑉 , 𝑅, 𝑠) is a
context-free grammar over Σ, then for two strings 𝛼, 𝛽 ∈ (Σ ∪ 𝑉)∗

we say that 𝛽 can be derived in one step from 𝛼, denoted by 𝛼 ⇒𝐺 𝛽,
if we can obtain 𝛽 from 𝛼 by applying one of the rules of 𝐺. That is,
we obtain 𝛽 by replacing in 𝛼 one occurrence of the variable 𝑣 with
the string 𝑧, where 𝑣 ⇒ 𝑧 is a rule of 𝐺.

We say that 𝛽 can be derived from 𝛼, denoted by 𝛼 ⇒∗
𝐺 𝛽, if it

can be derived by some finite number 𝑘 of steps. That is, if there
are 𝛼1, … , 𝛼𝑘−1 ∈ (Σ ∪ 𝑉)∗, so that 𝛼 ⇒𝐺 𝛼1 ⇒𝐺 𝛼2 ⇒𝐺 ⋯ ⇒𝐺
𝛼𝑘−1 ⇒𝐺 𝛽.

We say that 𝑥 ∈ Σ∗ is matched by 𝐺 = (𝑉 , 𝑅, 𝑠) if 𝑥 can be de-
rived from the starting variable 𝑠 (i.e., if 𝑠 ⇒∗

𝐺 𝑥). We define the
function computed by (𝑉 , 𝑅, 𝑠) to be the map Φ𝑉 ,𝑅,𝑠 ∶ Σ∗ → {0, 1}
such that Φ𝑉 ,𝑅,𝑠(𝑥) = 1 iff 𝑥 is matched by (𝑉 , 𝑅, 𝑠). A function
𝐹 ∶ Σ∗ → {0, 1} is context free if 𝐹 = Φ𝑉 ,𝑅,𝑠 for some CFG (𝑉 , 𝑅, 𝑠).
1

A priori it might not be clear that the map Φ𝑉 ,𝑅,𝑠 is computable,
but it turns out that this is the case.

Theorem 10.5 — Context-free grammars always halt. For every CFG
(𝑉 , 𝑅, 𝑠) over {0, 1}, the function Φ𝑉 ,𝑅,𝑠 ∶ {0, 1}∗ → {0, 1} is
computable.

As usual we restrict attention to grammars over {0, 1} although the
proof extends to any finite alphabet Σ.

Proof. We only sketch the proof. We start with the observation we can
convert every CFG to an equivalent version of Chomsky normal form,
where all rules either have the form 𝑢 → 𝑣𝑤 for variables 𝑢, 𝑣, 𝑤 or the
form 𝑢 → 𝜎 for a variable 𝑢 and symbol 𝜎 ∈ Σ, plus potentially the
rule 𝑠 → "" where 𝑠 is the starting variable.

The idea behind such a transformation is to simply add new vari-
ables as needed, and so for example we can translate a rule such as
𝑣 → 𝑢𝜎𝑤 into the three rules 𝑣 → 𝑢𝑟, 𝑟 → 𝑡𝑤 and 𝑡 → 𝜎.

restricted computational models 365

Using the Chomsky Normal form we get a natural recursive algo-
rithm for computing whether 𝑠 ⇒∗

𝐺 𝑥 for a given grammar 𝐺 and
string 𝑥. We simply try all possible guesses for the first rule 𝑠 → 𝑢𝑣
that is used in such a derivation, and then all possible ways to par-
tition 𝑥 as a concatenation 𝑥 = 𝑥′𝑥″. If we guessed the rule and the
partition correctly, then this reduces our task to checking whether
𝑢 ⇒∗

𝐺 𝑥′ and 𝑣 ⇒∗
𝐺 𝑥″, which (as it involves shorter strings) can

be done recursively. The base cases are when 𝑥 is empty or a single
symbol, and can be easily handled.

■

R
Remark 10.6 — Parse trees. While we focus on the
task of deciding whether a CFG matches a string, the
algorithm to compute Φ𝑉 ,𝑅,𝑠 actually gives more in-
formation than that. That is, on input a string 𝑥, if
Φ𝑉 ,𝑅,𝑠(𝑥) = 1 then the algorithm yields the sequence
of rules that one can apply from the starting vertex 𝑠
to obtain the final string 𝑥. We can think of these rules
as determining a tree with 𝑠 being the root vertex and
the sinks (or leaves) corresponding to the substrings
of 𝑥 that are obtained by the rules that do not have a
variable in their second element. This tree is known
as the parse tree of 𝑥, and often yields very useful
information about the structure of 𝑥.
Often the first step in a compiler or interpreter for a
programming language is a parser that transforms the
source into the parse tree (also known as the abstract
syntax tree). There are also tools that can automati-
cally convert a description of a context-free grammars
into a parser algorithm that computes the parse tree of
a given string. (Indeed, the above recursive algorithm
can be used to achieve this, but there are much more
efficient versions, especially for grammars that have
particular forms, and programming language design-
ers often try to ensure their languages have these more
efficient grammars.)

10.2.2 The power of context free grammars
Context free grammars can capture every regular expression:

Theorem 10.7 — Context free grammars and regular expressions. Let 𝑒 be a
regular expression over {0, 1}, then there is a CFG (𝑉 , 𝑅, 𝑠) over
{0, 1} such that Φ𝑉 ,𝑅,𝑠 = Φ𝑒.

Proof. We prove the theorem by induction on the length of 𝑒. If 𝑒 is
an expression of one bit length, then 𝑒 = 0 or 𝑒 = 1, in which case
we leave it to the reader to verify that there is a (trivial) CFG that

https://en.wikipedia.org/wiki/Abstract_syntax_tree
https://en.wikipedia.org/wiki/Abstract_syntax_tree
https://en.wikipedia.org/wiki/LR_parser

366 introduction to theoretical computer science

computes it. Otherwise, we fall into one of the following case: case 1:
𝑒 = 𝑒′𝑒″, case 2: 𝑒 = 𝑒′|𝑒″ or case 3: 𝑒 = (𝑒′)∗ where in all cases 𝑒′, 𝑒″

are shorter regular expressions. By the induction hypothesis, we can
define grammars (𝑉 ′, 𝑅′, 𝑠′) and (𝑉 ″, 𝑅″, 𝑠″) that compute Φ𝑒′ and
Φ𝑒″ respectively. By renaming variables, we can also assume without
loss of generality that 𝑉 ′ and 𝑉 ″ are disjoint.

In case 1, we can define the new grammar as follows: we add a new
starting variable 𝑠 ∉ 𝑉 ∪ 𝑉 ′ and the rule 𝑠 ↦ 𝑠′𝑠″. In case 2, we can
define the new grammar as follows: we add a new starting variable
𝑠 ∉ 𝑉 ∪ 𝑉 ′ and the rules 𝑠 ↦ 𝑠′ and 𝑠 ↦ 𝑠″. Case 3 will be the
only one that uses recursion. As before we add a new starting variable
𝑠 ∉ 𝑉 ∪ 𝑉 ′, but now add the rules 𝑠 ↦ "" (i.e., the empty string) and
also add, for every rule of the form (𝑠′, 𝛼) ∈ 𝑅′, the rule 𝑠 ↦ 𝑠𝛼 to 𝑅.

We leave it to the reader as (a very good!) exercise to verify that in
all three cases the grammars we produce capture the same function as
the original expression.

■

It turns out that CFG’s are strictly more powerful than regular
expressions. In particular, as we’ve seen, the “matching parentheses”
function MATCHPAREN can be computed by a context free grammar,
whereas, as shown in Lemma 6.20, it cannot be computed by regular
expressions. Here is another example:

Solved Exercise 10.1 — Context free grammar for palindromes. Let PAL ∶
{0, 1, ; }∗ → {0, 1} be the function defined in Solved Exercise 6.4 where
PAL(𝑤) = 1 iff 𝑤 has the form 𝑢; 𝑢𝑅. Then PAL can be computed by a
context-free grammar

■

Solution:

A simple grammar computing PAL can be described using
Backus–Naur notation:

start := ; | 0 start 0 | 1 start 1

One can prove by induction that this grammar generates exactly
the strings 𝑤 such that PAL(𝑤) = 1.

■

A more interesting example is computing the strings of the form
𝑢; 𝑣 that are not palindromes:

Solved Exercise 10.2 — Non-palindromes. Prove that there is a context free
grammar that computes NPAL ∶ {0, 1, ; }∗ → {0, 1} where NPAL(𝑤) =
1 if 𝑤 = 𝑢; 𝑣 but 𝑣 ≠ 𝑢𝑅.

■

restricted computational models 367

Solution:

Using Backus–Naur notation we can describe such a grammar as
follows

palindrome := ; | 0 palindrome 0 | 1 palindrome 1

different := 0 palindrome 1 | 1 palindrome 0

start := different | 0 start | 1 start | start

0 | start 1↪

In words, this means that we can characterize a string 𝑤 such
that NPAL(𝑤) = 1 as having the following form

𝑤 = 𝛼𝑏𝑢; 𝑢𝑅𝑏′𝛽
where 𝛼, 𝛽, 𝑢 are arbitrary strings and 𝑏 ≠ 𝑏′. Hence we can

generate such a string by first generating a palindrome 𝑢; 𝑢𝑅

(palindrome variable), then adding 0 on either the left or right and
1 on the opposite side to get something that is not a palindrome
(different variable), and then we can add arbitrary number of 0’s
and 1’s on either end (the start variable).

■

10.2.3 Limitations of context-free grammars (optional)
Even though context-free grammars are more powerful than regular
expressions, there are some simple languages that are not captured
by context free grammars. One tool to show this is the context-free
grammar analog of the “pumping lemma” (Theorem 6.21):

Theorem 10.8 — Context-free pumping lemma. Let (𝑉 , 𝑅, 𝑠) be a CFG
over Σ, then there is some numbers 𝑛0, 𝑛1 ∈ ℕ such that for every
𝑥 ∈ Σ∗ with |𝑥| > 𝑛0, if Φ𝑉 ,𝑅,𝑠(𝑥) = 1 then 𝑥 = 𝑎𝑏𝑐𝑑𝑒 such that
|𝑏| + |𝑐| + |𝑑| ≤ 𝑛1, |𝑏| + |𝑑| ≥ 1, and Φ𝑉 ,𝑅,𝑠(𝑎𝑏𝑘𝑐𝑑𝑘𝑒) = 1 for every
𝑘 ∈ ℕ.

P
The context-free pumping lemma is even more cum-
bersome to state than its regular analog, but you can
remember it as saying the following: “If a long enough
string is matched by a grammar, there must be a variable
that is repeated in the derivation.”

Proof of Theorem 10.8. We only sketch the proof. The idea is that if
the total number of symbols in the rules of the grammar is 𝑛0, then
the only way to get |𝑥| > 𝑛0 with Φ𝑉 ,𝑅,𝑠(𝑥) = 1 is to use recursion.
That is, there must be some variable 𝑣 ∈ 𝑉 such that we are able to

368 introduction to theoretical computer science

derive from 𝑣 the value 𝑏𝑣𝑑 for some strings 𝑏, 𝑑 ∈ Σ∗, and then further
on derive from 𝑣 some string 𝑐 ∈ Σ∗ such that 𝑏𝑐𝑑 is a substring of
𝑥 (in other words, 𝑥 = 𝑎𝑏𝑐𝑑𝑒 for some 𝑎, 𝑒 ∈ {0, 1}∗). If we take
the variable 𝑣 satisfying this requirement with a minimum number
of derivation steps, then we can ensure that |𝑏𝑐𝑑| is at most some
constant depending on 𝑛0 and we can set 𝑛1 to be that constant (𝑛1 =
10 ⋅ |𝑅| ⋅ 𝑛0 will do, since we will not need more than |𝑅| applications
of rules, and each such application can grow the string by at most 𝑛0
symbols).

Thus by the definition of the grammar, we can repeat the derivation
to replace the substring 𝑏𝑐𝑑 in 𝑥 with 𝑏𝑘𝑐𝑑𝑘 for every 𝑘 ∈ ℕ while
retaining the property that the output of Φ𝑉 ,𝑅,𝑠 is still one. Since 𝑏𝑐𝑑
is a substring of 𝑥, we can write 𝑥 = 𝑎𝑏𝑐𝑑𝑒 and are guaranteed that
𝑎𝑏𝑘𝑐𝑑𝑘𝑒 is matched by the grammar for every 𝑘.

■

Using Theorem 10.8 one can show that even the simple function
𝐹 ∶ {0, 1}∗ → {0, 1} defined as follows:

𝐹(𝑥) =
⎧{
⎨{⎩

1 𝑥 = 𝑤𝑤 for some 𝑤 ∈ {0, 1}∗

0 otherwise

is not context free. (In contrast, the function 𝐺 ∶ {0, 1}∗ → {0, 1}
defined as 𝐺(𝑥) = 1 iff 𝑥 = 𝑤0𝑤1 ⋯ 𝑤𝑛−1𝑤𝑛−1𝑤𝑛−2 ⋯ 𝑤0 for some
𝑤 ∈ {0, 1}∗ and 𝑛 = |𝑤| is context free, can you see why?.)

Solved Exercise 10.3 — Equality is not context-free. Let EQ ∶ {0, 1, ; }∗ →
{0, 1} be the function such that EQ(𝑥) = 1 if and only if 𝑥 = 𝑢; 𝑢 for
some 𝑢 ∈ {0, 1}∗. Then EQ is not context free.

■

Solution:

We use the context-free pumping lemma. Suppose towards the
sake of contradiction that there is a grammar 𝐺 that computes EQ,
and let 𝑛0 be the constant obtained from Theorem 10.8.

Consider the string 𝑥 = 1𝑛00𝑛0 ; 1𝑛00𝑛0 , and write it as 𝑥 = 𝑎𝑏𝑐𝑑𝑒
as per Theorem 10.8, with |𝑏𝑐𝑑| ≤ 𝑛0 and with |𝑏| + |𝑑| ≥ 1. By The-
orem 10.8, it should hold that EQ(𝑎𝑐𝑒) = 1. However, by case anal-
ysis this can be shown to be a contradiction.

Firstly, unless 𝑏 is on the left side of the ; separator and 𝑑 is on
the right side, dropping 𝑏 and 𝑑 will definitely make the two parts
different. But if it is the case that 𝑏 is on the left side and 𝑑 is on the
right side, then by the condition that |𝑏𝑐𝑑| ≤ 𝑛0 we know that 𝑏 is a
string of only zeros and 𝑑 is a string of only ones. If we drop 𝑏 and
𝑑 then since one of them is non-empty, we get that there are either

restricted computational models 369

less zeroes on the left side than on the right side, or there are less
ones on the right side than on the left side. In either case, we get
that EQ(𝑎𝑐𝑒) = 0, obtaining the desired contradiction.

■

10.3 SEMANTIC PROPERTIES OF CONTEXT FREE LANGUAGES

As in the case of regular expressions, the limitations of context free
grammars do provide some advantages. For example, emptiness of
context free grammars is decidable:

Theorem 10.9 — Emptiness for CFG’s is decidable. There is an algorithm
that on input a context-free grammar 𝐺, outputs 1 if and only if Φ𝐺
is the constant zero function.

Proof Idea:

The proof is easier to see if we transform the grammar to Chomsky
Normal Form as in Theorem 10.5. Given a grammar 𝐺, we can recur-
sively define a non-terminal variable 𝑣 to be non-empty if there is either
a rule of the form 𝑣 ⇒ 𝜎, or there is a rule of the form 𝑣 ⇒ 𝑢𝑤 where
both 𝑢 and 𝑤 are non-empty. Then the grammar is non-empty if and
only if the starting variable 𝑠 is non-empty.

⋆

Proof of Theorem 10.9. We assume that the grammar 𝐺 in Chomsky
Normal Form as in Theorem 10.5. We consider the following proce-
dure for marking variables as “non-empty”:

1. We start by marking all variables 𝑣 that are involved in a rule of the
form 𝑣 ⇒ 𝜎 as non-empty.

2. We then continue to mark 𝑣 as non-empty if it is involved in a rule
of the form 𝑣 ⇒ 𝑢𝑤 where 𝑢, 𝑤 have been marked before.

We continue this way until we cannot mark any more variables. We
then declare that the grammar is empty if and only if 𝑠 has not been
marked. To see why this is a valid algorithm, note that if a variable 𝑣
has been marked as “non-empty” then there is some string 𝛼 ∈ Σ∗ that
can be derived from 𝑣. On the other hand, if 𝑣 has not been marked,
then every sequence of derivations from 𝑣 will always have a variable
that has not been replaced by alphabet symbols. Hence in particular
Φ𝐺 is the all zero function if and only if the starting variable 𝑠 is not
marked “non-empty”.

■

370 introduction to theoretical computer science

10.3.1 Uncomputability of context-free grammar equivalence (optional)
By analogy to regular expressions, one might have hoped to get an
algorithm for deciding whether two given context free grammars
are equivalent. Alas, no such luck. It turns out that the equivalence
problem for context free grammars is uncomputable. This is a direct
corollary of the following theorem:

Theorem 10.10 — Fullness of CFG’s is uncomputable. For every set Σ, let
CFGFULLΣ be the function that on input a context-free grammar 𝐺
over Σ, outputs 1 if and only if 𝐺 computes the constant 1 function.
Then there is some finite Σ such that CFGFULLΣ is uncomputable.

Theorem 10.10 immediately implies that equivalence for context-
free grammars is uncomputable, since computing “fullness” of a
grammar 𝐺 over some alphabet Σ = {𝜎0, … , 𝜎𝑘−1} corresponds to
checking whether 𝐺 is equivalent to the grammar 𝑠 ⇒ ""|𝑠𝜎0| ⋯ |𝑠𝜎𝑘−1.
Note that Theorem 10.10 and Theorem 10.9 together imply that
context-free grammars, unlike regular expressions, are not closed
under complement. (Can you see why?) Since we can encode every
element of Σ using ⌈log |Σ|⌉ bits (and this finite encoding can be easily
carried out within a grammar) Theorem 10.10 implies that fullness is
also uncomputable for grammars over the binary alphabet.

Proof Idea:

We prove the theorem by reducing from the Halting problem. To
do that we use the notion of configurations of NAND-TM programs, as
defined in Definition 8.8. Recall that a configuration of a program 𝑃 is a
binary string 𝑠 that encodes all the information about the program in
the current iteration.

We define Σ to be {0, 1} plus some separator characters and define
INVALID𝑃 ∶ Σ∗ → {0, 1} to be the function that maps every string 𝐿 ∈
Σ∗ to 1 if and only if 𝐿 does not encode a sequence of configurations
that correspond to a valid halting history of the computation of 𝑃 on
the empty input.

The heart of the proof is to show that INVALID𝑃 is context-free.
Once we do that, we see that 𝑃 halts on the empty input if and only if
INVALID𝑃 (𝐿) = 1 for every 𝐿. To show that, we will encode the list
in a special way that makes it amenable to deciding via a context-free
grammar. Specifically we will reverse all the odd-numbered strings.

⋆

Proof of Theorem 10.10. We only sketch the proof. We will show that if
we can compute CFGFULL then we can solve HALTONZERO, which
has been proven uncomputable in Theorem 9.9. Let 𝑀 be an input

restricted computational models 371

Turing machine for HALTONZERO. We will use the notion of configu-
rations of a Turing machine, as defined in Definition 8.8.

Recall that a configuration of Turing machine 𝑀 and input 𝑥 cap-
tures the full state of 𝑀 at some point of the computation. The partic-
ular details of configurations are not so important, but what you need
to remember is that:

• A configuration can be encoded by a binary string 𝜎 ∈ {0, 1}∗.

• The initial configuration of 𝑀 on the input 0 is some fixed string.

• A halting configuration will have the value a certain state (which can
be easily “read off” from it) set to 1.

• If 𝜎 is a configuration at some step 𝑖 of the computation, we denote
by NEXT𝑀(𝜎) as the configuration at the next step. NEXT𝑀(𝜎) is
a string that agrees with 𝜎 on all but a constant number of coor-
dinates (those encoding the position corresponding to the head
position and the two adjacent ones). On those coordinates, the
value of NEXT𝑀(𝜎) can be computed by some finite function.

We will let the alphabet Σ = {0, 1} ∪ {‖, #}. A computation his-
tory of 𝑀 on the input 0 is a string 𝐿 ∈ Σ that corresponds to a list
‖𝜎0#𝜎1‖𝜎2#𝜎3 ⋯ 𝜎𝑡−2‖𝜎𝑡−1# (i.e., ‖ comes before an even numbered
block, and # comes before an odd numbered one) such that if 𝑖 is
even then 𝜎𝑖 is the string encoding the configuration of 𝑃 on input 0
at the beginning of its 𝑖-th iteration, and if 𝑖 is odd then it is the same
except the string is reversed. (That is, for odd 𝑖, 𝑟𝑒𝑣(𝜎𝑖) encodes the
configuration of 𝑃 on input 0 at the beginning of its 𝑖-th iteration.)
Reversing the odd-numbered blocks is a technical trick to ensure that
the function INVALID𝑀 we define below is context free.

We now define INVALID𝑀 ∶ Σ∗ → {0, 1} as follows:

INVALID𝑀(𝐿) =
⎧{
⎨{⎩

0 𝐿 is a valid computation history of 𝑀 on 0
1 otherwise

We will show the following claim:
CLAIM: INVALID𝑀 is context-free.
The claim implies the theorem. Since 𝑀 halts on 0 if and only if

there exists a valid computation history, INVALID𝑀 is the constant
one function if and only if 𝑀 does not halt on 0. In particular, this
allows us to reduce determining whether 𝑀 halts on 0 to determining
whether the grammar 𝐺𝑀 corresponding to INVALID𝑀 is full.

We now turn to the proof of the claim. We will not show all the
details, but the main point INVALID𝑀(𝐿) = 1 if at least one of the
following three conditions hold:

372 introduction to theoretical computer science

1. 𝐿 is not of the right format, i.e. not of the form ⟨binary-string⟩#⟨binary-string⟩‖⟨binary-string⟩# ⋯.

2. 𝐿 contains a substring of the form ‖𝜎#𝜎′‖ such that
𝜎′ ≠ 𝑟𝑒𝑣(NEXT𝑃 (𝜎))

3. 𝐿 contains a substring of the form #𝜎‖𝜎′# such that
𝜎′ ≠ NEXT𝑃 (𝑟𝑒𝑣(𝜎))

Since context-free functions are closed under the OR operation, the
claim will follow if we show that we can verify conditions 1, 2 and 3
via a context-free grammar.

For condition 1 this is very simple: checking that 𝐿 is of the correct
format can be done using a regular expression. Since regular expres-
sions are closed under negation, this means that checking that 𝐿 is not
of this format can also be done by a regular expression and hence by a
context-free grammar.

For conditions 2 and 3, this follows via very similar reasoning to
that showing that the function 𝐹 such that 𝐹(𝑢#𝑣) = 1 iff 𝑢 ≠ 𝑟𝑒𝑣(𝑣)
is context-free, see Solved Exercise 10.2. After all, the NEXT𝑀 function
only modifies its input in a constant number of places. We leave filling
out the details as an exercise to the reader. Since INVALID𝑀(𝐿) = 1
if and only if 𝐿 satisfies one of the conditions 1., 2. or 3., and all three
conditions can be tested for via a context-free grammar, this completes
the proof of the claim and hence the theorem.

■

10.4 SUMMARY OF SEMANTIC PROPERTIES FOR REGULAR EX-
PRESSIONS AND CONTEXT-FREE GRAMMARS

To summarize, we can often trade expressiveness of the model for
amenability to analysis. If we consider computational models that are
not Turing complete, then we are sometimes able to bypass Rice’s The-
orem and answer certain semantic questions about programs in such
models. Here is a summary of some of what is known about semantic
questions for the different models we have seen.

Table 10.1: Computability of semantic properties

Model Halting Emptiness Equivalence

Regular expressions Computable Computable Computable
Context free grammars Computable Computable Uncomputable
Turing-complete models UncomputableUncomputable Uncomputable

restricted computational models 373

✓ Chapter Recap

• The uncomputability of the Halting problem for
general models motivates the definition of re-
stricted computational models.

• In some restricted models we can answer semantic
questions such as: does a given program terminate,
or do two programs compute the same function?

• Regular expressions are a restricted model of com-
putation that is often useful to capture tasks of
string matching. We can test efficiently whether
an expression matches a string, as well as answer
questions such as Halting and Equivalence.

• Context free grammars is a stronger, yet still not Tur-
ing complete, model of computation. The halting
problem for context free grammars is computable,
but equivalence is not computable.

10.5 EXERCISES

Exercise 10.1 — Closure properties of context-free functions. Suppose that
𝐹, 𝐺 ∶ {0, 1}∗ → {0, 1} are context free. For each one of the following
definitions of the function 𝐻 , either prove that 𝐻 is always context
free or give a counterexample for regular 𝐹, 𝐺 that would make 𝐻 not
context free.

1. 𝐻(𝑥) = 𝐹(𝑥) ∨ 𝐺(𝑥).

2. 𝐻(𝑥) = 𝐹(𝑥) ∧ 𝐺(𝑥)

3. 𝐻(𝑥) = NAND(𝐹(𝑥), 𝐺(𝑥)).

4. 𝐻(𝑥) = 𝐹(𝑥𝑅) where 𝑥𝑅 is the reverse of 𝑥: 𝑥𝑅 = 𝑥𝑛−1𝑥𝑛−2 ⋯ 𝑥𝑜 for
𝑛 = |𝑥|.

5. 𝐻(𝑥) =
⎧{
⎨{⎩

1 𝑥 = 𝑢𝑣 s.t. 𝐹(𝑢) = 𝐺(𝑣) = 1
0 otherwise

6. 𝐻(𝑥) =
⎧{
⎨{⎩

1 𝑥 = 𝑢𝑢 s.t. 𝐹(𝑢) = 𝐺(𝑢) = 1
0 otherwise

7. 𝐻(𝑥) =
⎧{
⎨{⎩

1 𝑥 = 𝑢𝑢𝑅 s.t. 𝐹(𝑢) = 𝐺(𝑢) = 1
0 otherwise

■

Exercise 10.2 Prove that the function 𝐹 ∶ {0, 1}∗ → {0, 1} such that
𝐹(𝑥) = 1 if and only if |𝑥| is a power of two is not context free.

■

374 introduction to theoretical computer science

2 Try to see if you can “embed” in some way a func-
tion that looks similar to MATCHPAREN in SYN, so
you can use a similar proof. Of course for a function
to be non-regular, it does not need to utilize literal
parentheses symbols.

Exercise 10.3 — Syntax for programming languages. Consider the following
syntax of a “programming language” whose source can be written
using the ASCII character set:

• Variables are obtained by a sequence of letters, numbers and under-
scores, but can’t start with a number.

• A statement has either the form foo = bar; where foo and bar are
variables, or the form IF (foo) BEGIN ... END where ... is list
of one or more statements, potentially separated by newlines.

A program in our language is simply a sequence of statements (pos-
sibly separated by newlines or spaces).

1. Let VAR ∶ {0, 1}∗ → {0, 1} be the function that given a string
𝑥 ∈ {0, 1}∗, outputs 1 if and only if 𝑥 corresponds to an ASCII
encoding of a valid variable identifier. Prove that VAR is regular.

2. Let SYN ∶ {0, 1}∗ → {0, 1} be the function that given a string
𝑠 ∈ {0, 1}∗, outputs 1 if and only if 𝑠 is an ASCII encoding of a valid
program in our language. Prove that SYN is context free. (You do
not have to specify the full formal grammar for SYN, but you need
to show that such a grammar exists.)

3. Prove that SYN is not regular. See footnote for hint2

■

10.6 BIBLIOGRAPHICAL NOTES

As in the case of regular expressions, there are many resources avail-
able that cover context-free grammar in great detail. Chapter 2 of
[Sip97] contains many examples of context-free grammars and their
properties. There are also websites such as Grammophone where you
can input grammars, and see what strings they generate, as well as
some of the properties that they satisfy.

The adjective “context free” is used for CFG’s because a rule of
the form 𝑣 ↦ 𝑎 means that we can always replace 𝑣 with the string
𝑎, no matter what is the context in which 𝑣 appears. More generally,
we might want to consider cases where the replacement rules depend
on the context. This gives rise to the notion of general (aka “Type 0”)
grammars that allow rules of the form 𝑎 ⇒ 𝑏 where both 𝑎 and 𝑏 are
strings over (𝑉 ∪ Σ)∗. The idea is that if, for example, we wanted to
enforce the condition that we only apply some rule such as 𝑣 ↦ 0𝑤1
when 𝑣 is surrounded by three zeroes on both sides, then we could do
so by adding a rule of the form 000𝑣000 ↦ 0000𝑤1000 (and of course
we can add much more general conditions). Alas, this generality

https://en.wikipedia.org/wiki/ASCII
https://mdaines.github.io/grammophone/

restricted computational models 375

comes at a cost - general grammars are Turing complete and hence
their halting problem is uncomputable. That is, there is no algorithm
𝐴 that can determine for every general grammar 𝐺 and a string 𝑥,
whether or not the grammar 𝐺 generates 𝑥.

The Chomsky Hierarchy is a hierarchy of grammars from the least
restrictive (most powerful) Type 0 grammars, which correspond to
recursively enumerable languages (see Exercise 9.10) to the most re-
strictive Type 3 grammars, which correspond to regular languages.
Context-free languages correspond to Type 2 grammars. Type 1 gram-
mars are context sensitive grammars. These are more powerful than
context-free grammars but still less powerful than Turing machines.
In particular functions/languages corresponding to context-sensitive
grammars are always computable, and in fact can be computed by a
linear bounded automatons which are non-deterministic algorithms
that take 𝑂(𝑛) space. For this reason, the class of functions/languages
corresponding to context-sensitive grammars is also known as the
complexity class NSPACE𝑂(𝑛); we discuss space-bounded com-
plexity in Chapter 17). While Rice’s Theorem implies that we cannot
compute any non-trivial semantic property of Type 0 grammars, the
situation is more complex for other types of grammars: some seman-
tic properties can be determined and some cannot, depending on the
grammar’s place in the hierarchy.

https://en.wikipedia.org/wiki/Chomsky_hierarchy
https://en.wikipedia.org/wiki/Linear_bounded_automaton

