
9
Restricted computational models

“Happy families are all alike; every unhappy family is
unhappy in its own way”, Leo Tolstoy (opening of the
book “Anna Karenina”).

We have seen that a great many models of computation are Tur-
ing equivalent, including Turing machines, NAND-TM/NAND-RAM
programs, standard programming languages such as C/Python/-
Javascript etc.., and other models such as the 𝜆 calculus and even the
game of life. The flip side of this is that for all these models, Rice’s the-
orem (Theorem 8.11) holds as well, which means that any semantic
property of programs in such a model is uncomputable.

The uncomputability of halting and other semantic specification
problems for Turing equivalent models motivates restricted com-
putational models that are (a) powerful enough to capture a set of
functions useful for certain applications but (b) weak enough that we
can still solve semantic specification problems on them. In this chapter
we discuss several such examples.

9.1 TURING COMPLETENESS AS A BUG

We have seen that seemingly simple computational models or sys-
tems can turn out to be Turing complete. The following webpage lists
several examples of models that “accidentally” turned out to Turing
complete (without their designers’ intent), including supposedly
limited languages such as the C preprocessor, CCS, SQL, sendmail
configuration, as well as games such as Minecraft, Super Mario, and
the card game “Magic: The gathering”.

Turing completeness is not always a good thing, as it means that
such formalisms can give rise to arbitrarily complex behavior. For
example, the postscript format (a precursor of PDF) is a Turing-
complete programming language meant to describe documents for
printing. The expressive power of postscript can allow for short de-
scriptions of very complex images, but it also gave rise to some nasty

Compiled on 2.15.2019 13:54

Learning Objectives:
• See that Turing completeness is not always a

good thing
• Two important examples of

non-Turing-complete, always-halting
formalisms: regular expressions and
context-free grammars.

• The pumping lemmas for both these
formalisms, and examples of non regular and
non context-free functions.

• Examples of computable and uncomputable
semantic properties of regular expressions and
context-free grammars.

https://goo.gl/xRXq7p

292 introduction to theoretical computer science

surprises, such as the attacks described in this page ranging from us-
ing infinite loops as a denial of service attack, to accessing the printer’s
file system.

� Example 9.1 — The DAO Hack. An interesting recent example of the
pitfalls of Turing-completeness arose in the context of the cryp-
tocurrency Ethereum. The distinguishing feature of this currency
is the ability to design “smart contracts” using an expressive (and
in particular Turing-complete) programming language. In our
current “human operated” economy, Alice and Bob might sign a
contract to agree that if condition X happens then they will jointly
invest in Charlie’s company. Ethereum allows Alice and Bob to
create a joint venture where Alice and Bob pool their funds to-
gether into an account that will be governed by some program 𝑃
that decides under what conditions it disburses funds from it. For
example, one could imagine a piece of code that interacts between
Alice, Bob, and some program running on Bob’s car that allows
Alice to rent out Bob’s car without any human intervention or
overhead.

Specifically Ethereum uses the Turing-complete programming
language solidity which has a syntax similar to JavaScript. The
flagship of Ethereum was an experiment known as The “Decen-
tralized Autonomous Organization” or The DAO. The idea was
to create a smart contract that would create an autonomously run
decentralized venture capital fund, without human managers,
where shareholders could decide on investment opportunities. The
DAO was at the time the biggest crowdfunding success in history.
At its height the DAO was worth 150 million dollars, which was
more than ten percent of the total Ethereum market. Investing in
the DAO (or entering any other “smart contract”) amounts to pro-
viding your funds to be run by a computer program. i.e., “code
is law”, or to use the words the DAO described itself: “The DAO
is borne from immutable, unstoppable, and irrefutable computer code”.
Unfortunately, it turns out that (as we saw in Chapter 8) under-
standing the behavior of computer programs is quite a hard thing
to do. A hacker (or perhaps, some would say, a savvy investor)
was able to fashion an input that caused the DAO code to enter
into an infinite recursive loop in which it continuously transferred
funds into the hacker’s account, thereby cleaning out about 60 mil-
lion dollars out of the DAO. While this transaction was “legal” in
the sense that it complied with the code of the smart contract, it
was obviously not what the humans who wrote this code had in
mind. The Ethereum community struggled with the response to

http://hacking-printers.net/wiki/index.php/PostScript
https://www.ethereum.org/
https://solidity.readthedocs.io/en/develop/index.html
https://goo.gl/NegW77
https://www.bloomberg.com/features/2017-the-ether-thief/
https://www.bloomberg.com/features/2017-the-ether-thief/

restricted computational models 293

this attack. Some tried to the “Robin Hood” approach of using the
same loophole to drain the DAO funds into a secure account, but
it only had limited success. Eventually, the Ethereum community
decided that the code can be mutable, stoppable, and refutable.
Specifically, the Ethereum maintainers and miners agreed on a
“hard fork” (also known as a “bailout”) to revert history to be-
fore the hacker’s transaction occurred. Some community members
strongly opposed this decision, and so an alternative currency
called Ethereum Classic was created that preserved the original
history.

9.2 REGULAR EXPRESSIONS

Searching for a piece of text is a common task in computing. At its
heart, the search problem is quite simple. We have a collection 𝑋 =
{𝑥0, … , 𝑥𝑘} of strings (e.g., files on a hard-drive, or student records in
a database), and the user wants to find out the subset of all the 𝑥 ∈ 𝑋
that are matched by some pattern (e.g., all files whose names end with
the string .txt). In full generality, we can allow the user to specify the
pattern by specifying a (computable) function 𝐹 ∶ {0, 1}∗ → {0, 1},
where 𝐹(𝑥) = 1 corresponds to the pattern matching 𝑥. That is, the
user provides a program 𝑃 in some Turing-complete programming
language such as Python, and the system will return all the 𝑥 ∈ 𝑋
such that 𝑃(𝑥) = 1. For example, one could search for all text files that
contain the string important document or perhaps (letting 𝑃 corre-
spond to a neural-network based classifier) all images that contain a
cat. However, we don’t want our system to get into an infinite loop
just trying to evaluate the program 𝑃 !

Because the Halting problem for Turing-complete computational
models is uncomputable, we cannot in general verify that a given pro-
gram 𝑃 will halt on a given input. For this reason, typical systems for
searching files or databases do not allow users to specify the patterns
using full-fledged programming languages. Rather, such systems use
restricted computational models that on the one hand are rich enough to
capture many of the queries needed in practice (e.g., all filenames
ending with .txt, or all phone numbers of the form (617) xxx-

xxxx), but on the other hand are restricted enough so that they cannot
result in an infinite loop.

One of the most popular such computational models is regular
expressions. If you ever used an advanced text editor, a command line
shell, or have done any kind of manipulations of text files, then you
have probably come across regular expressions.

A regular expression over some alphabet Σ is obtained by combining
elements of Σ with the operation of concatenation, as well as | (cor-

https://ethereumclassic.github.io/
https://goo.gl/2vTAFU
https://goo.gl/2vTAFU

294 introduction to theoretical computer science

1 Common implementations of regular expressions in
programming languages and shells typically include
some extra operations on top of | and ∗, but these
operations can be implemented as “syntactic sugar”
using the operators | and ∗.

2 We have seen recursive definitions before in the
setting of 𝜆 expressions (Definition 7.6). In a recursive
definition we start by defining the base case of the
simplest regular expressions, and then describe how
we can build more complex expressions from simpler
ones.

3 These are the regular expressions corresponding to
accepting no strings, and accepting only the empty
string respectively.

responding to or) and ∗ (corresponding to repetition zero or more
times).1 For example, the following regular expression over the alpha-
bet {0, 1} corresponds to the set of all strings 𝑥 ∈ {0, 1}∗ where every
digit is repeated at least twice:

(00(0∗)|11(1∗))∗ . (9.1)

The following regular expression over the alphabet {𝑎, … , 𝑧, 0, … , 9}
corresponds to the set of all strings that consist of a sequence of one
or more of the letters 𝑎-𝑑 followed by a sequence of one or more digits
(without a leading zero):

(𝑎|𝑏|𝑐|𝑑)(𝑎|𝑏|𝑐|𝑑)∗(1|2|3|4|5|6|7|8|9)(0|1|2|3|4|5|6|7|8|9)∗ . (9.2)

Formally, regular expressions are defined by the following recursive
definition:2

Definition 9.2 — Regular expression. A regular expression 𝑒 over an al-
phabet Σ is a string over Σ ∪ {(,), |, ∗,∅, ""} that has one of the
following forms:

1. 𝑒 = 𝜎 where 𝜎 ∈ Σ

2. 𝑒 = (𝑒′|𝑒″) where 𝑒′, 𝑒″ are regular expressions.

3. 𝑒 = (𝑒′)(𝑒″) where 𝑒′, 𝑒″ are regular expressions. (We often
drop the parenthesis when there is no danger of confusion and
so write this as 𝑒′ 𝑒″.)

4. 𝑒 = (𝑒′)∗ where 𝑒′ is a regular expression.

Finally we also allow the following “edge cases”: 𝑒 = ∅ and 𝑒 =
"". 3

We will drop parenthesis when they can be inferred from the
context. We also use the convention that OR and concatenation
are left-associative, and give higher precedence to ∗, then concate-
nation, and then OR. Thus for example we write 00∗|11 instead of
((0)(0∗))|((1)(1)).

Every regular expression 𝑒 corresponds to a function Φ𝑒 ∶ Σ∗ →
{0, 1} where Φ𝑒(𝑥) = 1 if 𝑥 matches the regular expression. For exam-
ple, if 𝑒 = (00|11)∗ then Φ𝑒(110011) = 1 but Φ𝑒(101) = 0 (can you see
why?).

P
The formal definition of Φ𝑒 is one of those definitions
that is more cumbersome to write than to grasp. Thus

restricted computational models 295

4 We use function notation in this book, but other texts
often use the notion of languages, which are sets of
strings. We say that a language 𝐿 ⊆ Σ∗ is regular if
and only if the corresponding function 𝐹𝐿 is regular,
where 𝐹𝐿 ∶ Σ∗ → {0, 1} is the function that outputs 1
on 𝑥 iff 𝑥 ∈ 𝐿.

it might be easier for you to first work it out on your
own and then check that your definition matches what
is written below.

Definition 9.3 — Matching a regular expression. Let 𝑒 be a regular expres-
sion over the alphabet Σ. The function Φ𝑒 ∶ Σ∗ → {0, 1} is defined
as follows:

1. If 𝑒 = 𝜎 then Φ𝑒(𝑥) = 1 iff 𝑥 = 𝜎.

2. If 𝑒 = (𝑒′|𝑒″) then Φ𝑒(𝑥) = Φ𝑒′(𝑥)∨Φ𝑒″(𝑥) where ∨ is the OR op-
erator.

3. If 𝑒 = (𝑒′)(𝑒″) then Φ𝑒(𝑥) = 1 iff there is some 𝑥′, 𝑥″ ∈ Σ∗ such
that 𝑥 is the concatenation of 𝑥′ and 𝑥″ and Φ𝑒′(𝑥′) = Φ𝑒″(𝑥″) =
1.

4. If 𝑒 = (𝑒′)∗ then Φ𝑒(𝑥) = 1 iff there are is 𝑘 ∈ ℕ and some
𝑥0, … , 𝑥𝑘−1 ∈ Σ∗ such that 𝑥 is the concatenation 𝑥0 ⋯ 𝑥𝑘−1 and
Φ𝑒′(𝑥𝑖) = 1 for every 𝑖 ∈ [𝑘].

5. Finally, for the edge cases Φ∅ is the constant zero function, and
Φ"" is the function that only outputs 1 on the empty string "".

We say that a regular expresion 𝑒 over Σ matches a string 𝑥 ∈ Σ∗

if Φ𝑒(𝑥) = 1. We say that a function 𝐹 ∶ Σ∗ → {0, 1} is regular if 𝐹 =
Φ𝑒 for some regular expression 𝑒. 4

P
The definitions above are not inherently difficult, but
are a bit cumbersome. So you should pause here and
go over it again until you understand why it corre-
sponds to our intuitive notion of regular expressions.
This is important not just for understanding regular
expressions themselves (which are used time and
again in a great many applications) but also for get-
ting better at understanding recursive definitions in
general.

� Example 9.4 — A regular function. Let Σ = {𝑎, 𝑏, 𝑐, 𝑑, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9}
and 𝐹 ∶ Σ∗ → {0, 1} be the function such that 𝐹(𝑥) outputs 1 iff
𝑥 consists of one or more of the letters 𝑎-𝑑 followed by a sequence
of one or more digits (without a leading zero). Then 𝐹 is a regular

296 introduction to theoretical computer science

5 Regular expressions (and context free grammars,
which we’ll see below) are also often thought of
as generative models, since you can think of them as
giving a recipe how to generate strings that match
them.

6 We state this theorem for regular expressions over
the binary alphabet {0, 1}, but it generalizes to any
finite alphabet Σ.

function, since 𝐹 = Φ𝑒 where

𝑒 = (𝑎|𝑏|𝑐|𝑑)(𝑎|𝑏|𝑐|𝑑)∗(0|1|2|3|4|5|6|7|8|9)(0|1|2|3|4|5|6|7|8|9)∗ (9.3)

is the expression we saw in (9.2).
If we wanted to verify, for example, that Φ𝑒(𝑎𝑏𝑐12078) = 1,

we can do so by noticing that the expression (𝑎|𝑏|𝑐|𝑑) matches
the string 𝑎, (𝑎|𝑏|𝑐|𝑑)∗ matches 𝑏𝑐, (0|1|2|3|4|5|6|7|8|9) matches the
string 1, and the expression (0|1|2|3|4|5|6|7|8|9)∗ matches the string
2078. Each one of those boils down to a simpler expression. For ex-
ample, the expression (𝑎|𝑏|𝑐|𝑑)∗ matches the string 𝑏𝑐 because both
of the one-character strings 𝑏 and 𝑐 are matched by the expression
𝑎|𝑏|𝑐|𝑑.

R
Remark 9.5 — Binary alphabet. Regular expression can
be defined over any finite alphabet Σ, but as usual,
we will focus our attention on the binary case, where
Σ = {0, 1}. Most (if not all) of the theoretical and
practical general insights about regular expressions
can be gleaned from studying the binary case.

We can think of regular expressions as a type of “programming
language”. That is, we can think of a regular expression 𝑒 over the
alphabet Σ as a program that computes the function Φ𝑒 ∶ Σ∗ → {0, 1}.5
This “regular expression programming language” is simpler than
general programming languages, in the sense that for every regular
expression 𝑒, the function Φ𝑒 is computable (and so in particular can
be evaluated by an always-halting Turing machine).

Theorem 9.6 — Regular expression always halt. For every regular expres-
sion 𝑒 over {0, 1}, the function Φ𝑒 ∶ {0, 1}∗ → {0, 1} is computable.
6

That is, there is a Turing machine 𝑀 such that for every 𝑥 ∈
{0, 1}∗, on input 𝑥, 𝑀 halts with the output Φ𝑒(𝑥).

Proof Idea:

The proof relies on the observation that Definition 9.3 actually
specifies a recursive algorithm for computing Φ𝑒. Specifically, each one
of our operations -concatenation, OR, and star- can be thought of as
reducing the task of testing whether an expression 𝑒 matches a string
𝑥 to testing whether some sub-expressions of 𝑒 match substrings of
𝑥. Since these sub-expressions are always shorter than the original
expression, this yields a recursive algorithm for checking if 𝑒 matches

restricted computational models 297

𝑥 which will eventually terminate at the base cases of the expressions
that correspond to a single symbol or the empty string.

⋆

Proof of Theorem 9.6. Definition 9.3 gives a way of recursively com-
puting Φ𝑒. The key observation is that in our recursive definition of
regular expressions, whenever 𝑒 is made up of one or two expres-
sions 𝑒′, 𝑒″ then these two regular expressions are smaller than 𝑒, and
eventually (when they have size 1) then they must correspond to the
non-recursive case of a single alphabet symbol.

Therefore, we can prove the theorem by induction over the length
𝑚 of 𝑒 (i.e., the number of symbols in the string 𝑒, also denoted as
|𝑒|). For 𝑚 = 1, 𝑒 is either a single alphabet symbol, "" or ∅, and so
computing the function Φ𝑒 is straightforward. In the general case, for
𝑚 = |𝑒| we assume by the induction hypothesis that we have proven
the theorem for all expressions of length smaller than 𝑚. Now, such
an expression of length larger than one can obtained one of three cases
using the OR, concatenation, or star operations. We now show that Φ𝑒
will be computable in all these cases:

Case 1: 𝑒 = (𝑒′|𝑒″) where 𝑒′, 𝑒″ are shorter regular expressions.
In this case by the inductive hypothesis we can compute Φ𝑒′ and

Φ𝑒″ and so can compute Φ𝑒(𝑥) as Φ𝑒′(𝑥) ∨ Φ𝑒″(𝑥) (where ∨ is the OR
operator).

Case 2: 𝑒 = (𝑒′)(𝑒″) where 𝑒′, 𝑒″ are regular expressions.
In this case by the inductive hypothesis we can compute Φ𝑒′ and

Φ𝑒″ and so can compute Φ𝑒(𝑥) as

|𝑥|−1
⋁
𝑖=0

(Φ𝑒′(𝑥0 ⋯ 𝑥𝑖−1) ∧ Φ𝑒″(𝑥𝑖 ⋯ 𝑥|𝑥|−1)) (9.4)

where ∧ is the AND operator and for 𝑖 < 𝑗, 𝑥𝑗 ⋯ 𝑥𝑖 refers to the
empty string.

Case 3: 𝑒 = (𝑒′)∗ where 𝑒′ is a regular expression.
In this case by the inductive hypothesis we can compute Φ𝑒′ and

so we can compute Φ𝑒(𝑥) by enumerating over all 𝑘 from 1 to |𝑥|, and
all ways to write 𝑥 as the concatenation of 𝑘 strings 𝑥0 ⋯ 𝑥𝑘−1 (we
can do so by enumerating over all possible 𝑘 − 1 positions in which
one string stops and the other begins). If for one of those partitions,
Φ𝑒′(𝑥0) = ⋯ = Φ𝑒′(𝑥𝑘−1) = 1 then we output 1. Otherwise we output
0.

These three cases exhaust all the possibilities for an expression of
length larger than one, and hence this completes the proof.

�

298 introduction to theoretical computer science

9.3 DETERMINISTIC FINITE AUTOMATA, AND EFFICIENT MATCHING
OF REGULAR EXPRESSIONS (OPTIONAL)

The proof of Theorem 9.6 gives a recursive algorithm to evaluate
whether a given string matches or not a regular expression. But it is
not a very efficient algorithm.

However, it turns out that there is a much more efficient algorithm
that can match regular expressions in linear (i.e., 𝑂(𝑛)) time. Since
we have not yet covered the topics of time and space complexity,
we describe this algorithm in high level terms, without making the
computational model precise, using the colloquial notion of 𝑂(𝑛)
running time as is used in introduction to programming courses and
whiteboard coding interviews. We will see a formal definition of time
complexity in Chapter 12.

Theorem 9.7 — Matching regular expressions in linear time. Let 𝑒 be a regu-
lar expression. Then there is an 𝑂(𝑛) time algorithm that computes
Φ𝑒.

The implicit constant in the 𝑂(𝑛) term of Theorem 9.7 depends on
the expression 𝑒. Thus, another way to state Theorem 9.7 is that for
every expression 𝑒, there is some constant 𝑐 and an algorithm 𝐴 that
computes Φ𝑒 on 𝑛-bit inputs using at most 𝑐 ⋅ 𝑛 steps. This makes
sense, since in practice we often want to compute Φ𝑒(𝑥) for a small
regular expression 𝑒 and a large document 𝑥. Theorem 9.7 tells us that
we can do so with running time that scales linearly with the size of the
document, even if it has (potentially) worse dependence on the size of
the regular expression.

Proof Idea:

The idea is to define a more efficient recursive algorithm, that de-
termines whether 𝑒 matches a string 𝑥 ∈ {0, 1}𝑛 by reducing this task
to determining whether a related expression 𝑒′ matches 𝑥0, … , 𝑥𝑛−1.
This will result in an expression for the running time of the form
𝑇 (𝑛) = 𝑇 (𝑛 − 1) + 𝑂(1) which solves to 𝑇 (𝑛) = 𝑂(𝑛).

⋆

Proof of Theorem 9.7. The central definition for this proof is the notion
of a restriction of a regular expression. Given a regular expression 𝑒
over an alphabet Σ and symbol 𝜎 ∈ Σ, we define 𝑒[𝜎] to be a regular
expression such that 𝑒[𝜎] matches a string 𝑥 if and only if 𝑒 matches
the string 𝑥𝜎. For example, if 𝑒 is the regular expression 01|(01) ∗ (01)
(i.e., one or more occurrences of 01) then 𝑒[1] is equal to 0|(01) ∗ 0 and
𝑒[0] will be ∅. (Can you see now?)

restricted computational models 299

7 The value 𝐶(ℓ) can be shown to be polynomial in ℓ,
though this is not important for this theorem, since
we only care about the dependence of the time to
compute Φ𝑒(𝑥) on the length of 𝑥 and not about the
dependence of this time on the length of 𝑒.

For simplicity, from now on we fix our attention to the case that the
alphabet Σ is {0, 1}. Given a regular expression 𝑒 and 𝜎 ∈ {0, 1}, we
can compute 𝑒[𝜎] recursively as follows:

1. If 𝑒 = 𝜏 for 𝜏 ∈ {0, 1} then 𝑒[𝜎] = "" if 𝜏 = 𝜎 and 𝑒[𝜎] = ∅
otherwise.

2. If 𝑒 = 𝑒′|𝑒″ then 𝑒[𝜎] = 𝑒′[𝜎]|𝑒″[𝜎].

3. If 𝑒 = 𝑒′ 𝑒″ then 𝑒[𝜎] = 𝑒′ 𝑒″[𝜎] if 𝑒″ can not match the empty string.
Otherwise, 𝑒[𝜎] = 𝑒′ 𝑒″[𝜎]|𝑒′[𝜎]

4. If 𝑒 = (𝑒′)∗ then 𝑒[𝜎] = (𝑒′)∗(𝑒′[𝜎]).

5. If 𝑒 = "" or 𝑒 = ∅ then 𝑒[𝜎] = ∅.

We let 𝐶(ℓ) denote the time to compute 𝑒[𝜎] for regular expressions
of length at most ℓ.7

Using this notion of restriction, we can define the following recur-
sive algorithm for regular expression matching:

Algorithm 9.8 — Regular expression matching in linear time.

Input: Regular expression 𝑒 over {0, 1} and 𝑥 ∈ {0, 1}𝑛 for
𝑛 ∈ ℕ.
Goal: Compute Φ𝑒(𝑥)
Operation:

1. If 𝑥 = "" then return 1 if and only if Φ𝑒("") = 1. (This
can be either computed directly or using the algorithm
of Theorem 9.6 in time which is a constant depending
only on the regular expression 𝑒.)

2. Otherwise, compute Φ𝑒[𝑥𝑛−1](𝑥0 ⋯ 𝑥𝑛−1) recursively and
output the result.

By the definition of a restriction, for every 𝜎 ∈ {0, 1} and 𝑥′ ∈
{0, 1}∗, the expression 𝑒 matches 𝑥′𝜎 if and only if 𝑒[𝜎] matches 𝑥′.
Hence for every 𝑒 and 𝑥 ∈ {0, 1}𝑛, Φ𝑒[𝑥𝑛−1](𝑥0 ⋯ 𝑥𝑛−2) = Φ𝑒(𝑥) and
Algorithm 9.8 does return the correct answer. The only remaining task
is to analyze its running time.

Algorithm 9.8 is a recursive algorithm that on input an expression
𝑒 and a string 𝑥 ∈ {0, 1}𝑛, does some constant time computation
and then calls itself on input some expression 𝑒′ and a string 𝑥 of
length 𝑛 − 1. It will terminate after 𝑛 steps when it reaches a string of
length 0. So, to calculate the running time of Algorithm 9.8 we need to
analyze the cost of each step.

300 introduction to theoretical computer science

8 This claim is strongly related to the Myhill-Nerode
Theorem. One direction of this theorem can be
thought of as saying that if 𝑒 is a regular expres-
sion then there is at most a finite number of strings
𝑧0, … , 𝑧𝑘−1 such that Φ𝑒[𝑧𝑖] ≠ Φ𝑒[𝑧𝑗] for every
0 ≤ 𝑖 ≠ 𝑗 < 𝑘.

Specifically, the running time 𝑇 (𝑒, 𝑛) that it takes for Algorithm 9.8
to compute Φ𝑒 for inputs of length 𝑛 satisfies the recursive equation:

𝑇 (𝑒, 𝑛) = max{𝑇 (𝑒[0], 𝑛 − 1), 𝑇 (𝑒[1], 𝑛 − 1)} + 𝐶(|𝑒|) (9.5)

where 𝐶(ℓ), as before, denotes the time to compute 𝑒[𝜎] for expres-
sions 𝑒 of length at most ℓ. (In the base case 𝑛 = 0, 𝑇 (𝑒, 0) is equal to
some constant depending only on 𝑒.)

To get some intuition for the expression Eq. (9.5), let us open up the
recursion for one level, writing 𝑇 (𝑒, 𝑛) as

𝑇 (𝑒, 𝑛) = max{𝑇 (𝑒[0][0], 𝑛 − 2) + 𝐶(|𝑒[0]|),
𝑇 (𝑒[0][1], 𝑛 − 2) + 𝐶(|𝑒[0]|),
𝑇 (𝑒[1][0], 𝑛 − 2) + 𝐶(|𝑒[1]|),
𝑇 (𝑒[1][1], 𝑛 − 2) + 𝐶(|𝑒[1]|)} + 𝐶(|𝑒|) .

(9.6)

Continuing this way, we can see that 𝑇 (𝑒, 𝑛) ≤ 𝑛 ⋅ 𝐶(ℓ) + 𝑂(1)
where ℓ is the largest length of any expression 𝑒′ that we encounter
along the way. Therefore, the following claim suffices to show that
Algorithm 9.8 runs in linear time:

Claim: Let 𝑒 be a regular expression over {0, 1}, then there is some
constant 𝑐 such that for every string 𝛼 ∈ {0, 1}∗, if we restrict 𝑒 to 𝛼0,
and then to 𝛼1 and so on and so forth, the resulting expression has
length at most 𝑐.8

Proof of claim: For a regular expression 𝑒 over
{0, 1} and 𝛼 ∈ {0, 1}𝑚, we denote by 𝑒[𝛼] the
expression 𝑒[𝛼0][𝛼1] ⋯ [𝛼𝑚−1] obtained by re-
stricting 𝑒 to 𝛼0 and then to 𝛼1 and so on. We let
𝑆(𝑒) = {𝑒[𝛼]|𝛼 ∈ {0, 1}∗}. We will prove the
claim by showing that for every 𝑒, the set 𝑆(𝑒) is
finite, and hence so is the number 𝑐(𝑒) which is the
maximum length of 𝑒′ for 𝑒′ ∈ 𝑆(𝑒).
We prove this by induction on the structure of 𝑒. If
𝑒 is a symbol, the empty string, or the empty set,
then this is straightforward to show as the most
expressions 𝑆(𝑒) can contain are the expression
itself, "", and ∅. Otherwise we split to the two
cases (i) 𝑒 = 𝑒′∗ and (ii) 𝑒 = 𝑒′𝑒″, where 𝑒′, 𝑒″

are smaller expressions (and hence by the induc-
tion hypothesis 𝑆(𝑒′) and 𝑆(𝑒″) are finite). In the
case (i), if 𝑒 = (𝑒′)∗ then 𝑒[𝛼] is either equal to
(𝑒′)∗𝑒′[𝛼] or it is simply the empty set if 𝑒′[𝛼] = ∅.
Since 𝑒′[𝛼] is in the set 𝑆(𝑒′), the number of distinct
expressions in 𝑆(𝑒) is at most |𝑆(𝑒′)| + 1. In the
case (ii), if 𝑒 = 𝑒′𝑒″ then all the restrictions of 𝑒
to strings 𝛼 will either have the form 𝑒′𝑒″[𝛼] or the

https://goo.gl/mnKVMP
https://goo.gl/mnKVMP

restricted computational models 301

form 𝑒′𝑒″[𝛼]|𝑒′[𝛼′] where 𝛼′ is some string such that
𝛼 = 𝛼′𝛼″ and 𝑒[𝛼″] matches the empty string. Since
𝑒″[𝛼] ∈ 𝑆(𝑒″) and 𝑒′[𝛼′] ∈ 𝑆(𝑒′), the number of the
possible distinct expressions of the form 𝑒[𝛼] is at
most |𝑆(𝑒″)| + |𝑆(𝑒″)| ⋅ |𝑆(𝑒′)|. This completes the
proof of the claim.

The bottom line is that while running Algorithm 9.8 on a regular
expression 𝑒, all the expressions we ever encounter are in the finite set
𝑆(𝑒), no matter how large the input 𝑥 is, and so the running time of
Algorithm 9.8 satisfies the equation 𝑇 (𝑛) = 𝑇 (𝑛 − 1) + 𝐶′ for some
constant 𝐶′ depending on 𝑒. This solves to 𝑂(𝑛) where the implicit
constant in the Oh notation can (and will) depend on 𝑒 but crucially,
not on the length of the input 𝑥.

�

9.3.1 Matching regular expressions using constant memory
Theorem 9.7 is already quite impressive, but we can do even better.
Specifically, no matter how long the string 𝑥 is, we can compute Φ𝑒(𝑥)
by maintaining only a constant amount of memory and moreover
making a single pass over 𝑥. That is, the algorithm will scan the input
𝑥 once from start to finish, and then determine whether or not 𝑥 is
matched by the expression 𝑒. This is important in the common case
of trying to match a short regular expression over a huge file or docu-
ment that might not even fit in our computer’s memory. A single-pass
constant-memory algorithm is also known as a deterministic finite
automaton (DFA). There is a beautiful theory on the properties of
DFA’s and their connections with regular expressions. In particular, a
function is regular if and only if it can be computed by a DFA. We start
with showing the “only if” direction:

Theorem 9.9 — DFA for regular expression matching. Let 𝑒 be a regular
expression. Then there is an algorithm that on input 𝑥 ∈ {0, 1}∗

computes Φ𝑒(𝑥) while making a single pass over 𝑥 and maintaining
a constant amount of memory.

Proof Idea:

The idea is to replace the recursive algorithm of Algorithm 9.8
with a dynamic program, using the technique of memoization. If you
haven’t taken yet an algorithms course, you might not know these
techniques. This is OK; while this more efficient algorithm is crucial
for the many practical applications of regular expressions, it is not of
great importance for this book.

⋆

https://goo.gl/SG6DS7
https://goo.gl/SG6DS7
https://goo.gl/kgLdX1
https://en.wikipedia.org/wiki/Memoization

302 introduction to theoretical computer science

Proof of Theorem 9.9. We will replace the recursive Algorithm 9.8 with
the following iterative algorithm:

Algorithm 9.10 — Constant memory regular expression matching.

Input: Regular expression 𝑒 over {0, 1}, string 𝑥 ∈ {0, 1}𝑛.
Goals: Compute Φ𝑒(𝑥).
Operation:

1. Let 𝑆 = 𝑆(𝑒) be the set {𝑒[𝛼]|𝛼 ∈ {0, 1}∗} as defined
in the proof of Theorem 9.7. Note that 𝑆 is finite and by
definition, for every 𝑒′ ∈ 𝑆 and 𝜎 ∈ {0, 1}, 𝑒′[𝜎] is in 𝑆 as
well.

2. Define a Boolean variable 𝑣𝑒′ for every 𝑒′ ∈ 𝑆. Initially
we set 𝑣𝑒′ = 1 if and only if 𝑒′ matches the empty string.

3. For 𝑖 = 0, … , 𝑛 − 1 do the following:

a. Copy the variables {𝑣𝑒′} to temporary variables: For every
𝑒′ ∈ 𝑆, we set 𝑡𝑒𝑚𝑝𝑒′ = 𝑣𝑒′ .

b. Update the variables {𝑣𝑒′} based on the 𝑖-th bit of 𝑥: Let
𝜎 = 𝑥𝑖 and set 𝑣𝑒′ = 𝑡𝑒𝑚𝑝𝑒′[𝜎] for every 𝑒′ ∈ 𝑆.

4. Output 𝑣𝑒.

Algorithm 9.10 maintains the invariant that at the end of step 𝑖,
for every 𝑒′ ∈ 𝑆, the variable 𝑣𝑒′ is equal if and only if 𝑒′ matches
the string 𝑥0 ⋯ 𝑥𝑖−1. In particular, at the very end, 𝑣𝑒 is equal to 1 if
and only if 𝑒 matches the full string 𝑥0 ⋯ 𝑥𝑛−1. Algorithm 9.10 only
maintains a constant number of variables (as 𝑆 is finite), and that
it proceeds in one linear scan over the input, and so this proves the
theorem.

�

9.3.2 Deterministic Finite Automata
There is another way to think about single-pass constant-memory
algorithms, which is as Deterministic Finite Automata. If an algorithm
𝐴 uses 𝑐 bits of memory, then its memory can be in one of 𝐶 = 2𝑐

states which we can identify with the set [𝐶] = {0, … , 2𝑐 − 1}. When
the algorithm 𝐴 is in some state 𝑣 ∈ [𝐶] and it reads a bit 𝜎 = 𝑥𝑖 of
its input, it moves to a new state 𝑤 ∈ [𝐶] which we denote by 𝐴(𝑣, 𝜎).
Thus we can think of such an algorithm 𝐴 as a function mapping
[𝐶] × {0, 1} to [𝐶].

If we have such a single-pass constant-memory algorithm 𝐴 then
we can describe 𝐴’s execution on a string 𝑥 ∈ {0, 1}𝑛 as follows:

restricted computational models 303

Figure 9.1: A deterministic finite automaton that
computes the XOR function. It has two states 0 and 1,
and when it observes 𝜎 it transitions from 𝑣 to 𝑣 ⊕ 𝜎.

• 𝐴 starts in some initial state 𝑣0 ∈ [𝐶]. (Without loss of generality
𝑣0 = 0.)

• For 𝑖 = 0, … , 𝑛 − 1: 𝐴 updates its state by letting 𝑣𝑖+1 = 𝐴(𝑣𝑖, 𝑥𝑖).

• The final state 𝑣𝑛 determines whether 𝐴 outputs 0 or 1. We let
𝒜 ⊆ [𝐶] denote the set of states on which 𝐴 outputs 1. This is
known as the accepting states.

� Example 9.11 — DFA for XOR. Here is a DFA for computing the func-
tion XOR ∶ {0, 1}∗ → {0, 1} that maps 𝑥 to ∑𝑖∈[|𝑥|] 𝑥𝑖 mod 2.

We will have two states: 0 and 1. The set of accepting states is
{1}, and if we are in a state 𝑣 ∈ {0, 1} and read the bit 𝜎, we will
transition to the state 𝑣 if 𝜎 = 0 and to the state 1 − 𝑣 if 𝜎 = 1. In
other words, we transition to the state 𝑣 ⊕ 𝜎. Hence we can think of
this algorithm’s execution on input 𝑥 ∈ {0, 1}𝑛 as follows:

• Initially set 𝑣0 = 0.

• For every 𝑖 ∈ [𝑛], let 𝑣𝑖 = 𝑣𝑖+1 ⊕ 𝑥𝑖.

• Output 𝑣𝑛.

You can verify that the output of this algorithm is 𝑥0 ⊕ 𝑥1 ⊕ ⋯ ⊕
𝑥𝑛−1 = XOR(𝑥). We can describe this DFA also graphically, see
Fig. 9.1.

The formal definition of a DFA is the following:

Definition 9.12 — Deterministic Finite Automaton. A deterministic finite
automaton (DFA) with 𝐶 states over {0, 1} is a pair (𝐴, 𝒜) with
𝐴 ∶ [𝐶] × {0, 1} → [𝐶] and 𝒜 ⊆ [𝐶].

We say that (𝐴, 𝒜) computes a function 𝐹 ∶ {0, 1}∗ → {0, 1}
if for every 𝑛 ∈ ℕ and 𝑥 ∈ {0, 1}𝑛, if we define 𝑣0 = 0 and
𝑣𝑖+1 = 𝐴(𝑣𝑖, 𝑥𝑖) for every 𝑖 ∈ [𝑛], then

𝑣𝑛 ∈ 𝒜 ⇔ 𝐹(𝑥) = 1 (9.7)

P
Our treatment of automata in this book is quite brief.
If you find this definition confusing, there are plenty
of resources that help you get more comfortable
with DFA’s. In particular, Chapter 1 of Sipser’s book
[Sip97] contains an excellent exposition of this ma-
terial. There are also many websites with online

304 introduction to theoretical computer science

Figure 9.2: A deterministic finite automaton that
computes the function Φ(01)∗ .

simulators for automata, as well as translators from
regular expressions to automata and vice versa.

A central result in the automata theory is the following:

Theorem 9.13 — DFA and regular expression equivalency. Let 𝐹 ∶ {0, 1}∗ →
{0, 1}. Then 𝐹 is regular if and only if there exists a DFA (𝐴, 𝒜)
that computes 𝐹 .

Proof Idea:

One direction follows from Theorem 9.9, which shows that for
every regular expression 𝑒, the function Φ𝑒 can be computed by a DFA
(see for example Fig. 9.2). For the other direction, we show that given
a DFA (𝐴, 𝒜) for every 𝑣, 𝑤 ∈ [𝐶] we can find a regular expression that
would match 𝑥 ∈ {0, 1}∗ if an only if the DFA starting in state 𝑣, will
end up in state 𝑤 after reading 𝑥.

⋆

Proof of Theorem 9.13. Since Theorem 9.9 proves the “only if” direction,
we only need to show the “if” direction. Let (𝐴, 𝒜) be a DFA with
𝐶 states that computes the function 𝐹 . We need to show that 𝐹 is
regular.

For every 𝑣, 𝑤 ∈ [𝐶] we define 𝐹𝑣,𝑤 ∶ {0, 1}∗ → {0, 1} be the function
that maps 𝑥 ∈ {0, 1}∗ to 1 if and only if the DFA 𝐴, starting at the state
𝑣, will reach the state 𝑤 if it reads 𝑥. We will prove that 𝐹𝑣,𝑤 is regular
for every 𝑣, 𝑤. This will prove the theorem, since by Definition 9.12,
𝐹(𝑥) is equal to the OR of 𝐹0,𝑤(𝑥) for every 𝑤 ∈ 𝒜. Hence if we have a
regular expression for every function of the form 𝐹0,𝑤 then (using the
| operation of regular expression) we can obtain a regular expression
for 𝐹 as well.

To give a regular expression for functions of the form 𝐹𝑣,𝑤, it is
helpful to think of the DFA (𝐴, 𝒜) as an edge-labeled graph. That is,
consider a directed graph 𝐺 on the vertices [𝐶], where for every 𝑣 ∈
[𝐶] and 𝜎 ∈ {0, 1} we put a directed edge labeled with 𝜎 from 𝑣 to
𝑤 = 𝐴(𝑣, 𝜎). (Since it can be the case that 𝐴(𝑣, 𝜎) = 𝑣 or that 𝐴(𝑣, 0) =
𝐴(𝑣, 1), the graph can have self-loops and parallel edges.)

To give regular expressions for the functions 𝐹𝑣,𝑤, we start by defin-
ing the following functions 𝐹 𝑡

𝑣,𝑤: for every 𝑣, 𝑤 ∈ [𝐶] and 0 ≤ 𝑡 ≤ 𝐶,
𝐹 𝑡

𝑣,𝑤(𝑥) = 1 if starting from 𝑣 and observing 𝑥, the automata reaches
𝑤 with all intermediate states being in the set [𝑡] = {0, … , 𝑡 − 1}!. That
is, while 𝑣, 𝑤 themselves might be outside [𝑡], 𝐹 𝑡

𝑣,𝑤(𝑥) = 1 only if
throughout the execution of the automaton on 𝑥 (starting from 𝑣) it
never enters any of these states and still ends up at 𝑤. If 𝑡 = 0 then [𝑡]
is the empty set, and hence 𝐹 0

𝑣,𝑤(𝑥) = 1 if and only if the automaton

restricted computational models 305

reaches 𝑤 from 𝑣 directly, without any intermediate state. This only
happens if |𝑥| = 1 and there is an edge from 𝑣 to 𝑤 that is labeled with
𝑥. If 𝑡 = 𝐶 then all states are in [𝑡], and hence 𝐹 𝑡

𝑣,𝑤 = 𝐹𝑣,𝑤.
We will prove the theorem by induction on 𝑡, showing that 𝐹 𝑡

𝑣,𝑤
is regular for every 𝑣, 𝑤 and 𝑡. For the base case, 𝐹 0

𝑣,𝑤 is regular for
every 𝑣, 𝑤 since it can be described one of the expressions ∅, 0, 1 or
0|1, depending on whether there are zero, one, or two edges from 𝑣 to
𝑤, and what are their labels.

Asssume, via the induction hypothesis, that for every 𝑣′, 𝑤′ ∈ [𝐶],
we have a regular expression 𝑅𝑡

𝑣,𝑤 that computes 𝐹 𝑡
𝑣′,𝑤′ . We need

to prove that 𝐹 𝑡+1
𝑣,𝑤 is regular for every 𝑣, 𝑤. If the automaton arrives

from 𝑣 to 𝑤 using the intermediate vertices [𝑡 + 1], then it visits the
𝑡-th vertex zero or more times. If it visits the 𝑡-th vertex 𝑘 times, then
each of these 𝑘 times corresponds to a path from 𝑡 to 𝑡 that involves
only the vertices [𝑡]. Therefore we can compute 𝐹 𝑡+1

𝑣,𝑤 using the regular
expression

𝑅𝑡
𝑣,𝑤 | 𝑅𝑡

𝑣,𝑡(𝑅𝑡
𝑡,𝑡)∗𝑅𝑡

𝑡,𝑤 . (9.8)

The first part of the expression corresponds to the strings 𝑥 that
describes paths from 𝑣 to 𝑤 that do not involve the state 𝑡, and the
second part describe paths that involve the state 𝑡 one or more times
(and hence involve travelling from 𝑣 to 𝑡, then potentially returning to
𝑡 more times, and then going from 𝑡 to 𝑤).

�

9.3.3 Regular functions are closed under complement
Here is an important corollary of Theorem 9.13:

Lemma 9.14 — Regular expressions closed under complement. If 𝐹 ∶ {0, 1}∗ →
{0, 1} is regular then so is the function 𝐹 , where 𝐹(𝑥) = 1 − 𝐹(𝑥) for
every 𝑥 ∈ {0, 1}∗.

Proof. If 𝐹 is regular then by Theorem 9.7 it can be computed by a
constant-space one-pass algorithm 𝐴. But then the algorithm 𝐴 which
does the same computation and outputs the negation of the output
of 𝐴 also utilizes constant space and one pass and computes 𝐹 . By
Theorem 9.13 this implies that 𝐹 is regular as well.

�

9.4 LIMITATIONS OF REGULAR EXPRESSIONS

The fact that functions computed by regular expressions always halt is
one of the reasons why they are so useful. When you make a regular
expression search, you are guaranteed that that it will terminate with
a result. This is why operating systems and text editors, for example,

306 introduction to theoretical computer science

Figure 9.3: To prove the “pumping lemma” we look
at a word 𝑤 that is much larger than the regular
expression 𝑒 that matches it. In such a case, part of
𝑤 must be matched by some sub-expression of the
form (𝑒′)∗, since this is the only operator that allows
matching words longer than the expression. If we
look at the “leftmost” such sub-expression and define
𝑦𝑘 to be the string that is matched by it, we obtain the
partition needed for the pumping lemma.

often restrict their search interface to regular expressions and don’t
allow searching by specifying an arbitrary function. But this always-
halting property comes at a cost. Regular expressions cannot compute
every function that is computable by Turing machines. In fact there
are some very simple (and useful!) functions that they cannot com-
pute, such as the following:

Lemma 9.15 — Matching parenthesis. Let Σ = {⟨, ⟩} and MATCHPAREN ∶
Σ∗ → {0, 1} be the function that given a string of parenthesis, out-
puts 1 if and only if every opening parenthesis is matched by a corre-
sponding closed one. Then there is no regular expression over Σ that
computes MATCHPAREN.

Lemma 9.15 is a consequence of the following result known as the
pumping lemma:

Theorem 9.16 — Pumping Lemma. Let 𝑒 be a regular expression. Then
there is some number 𝑛0 such that for every 𝑤 ∈ {0, 1}∗ with
|𝑤| > 𝑛0 and Φ𝑒(𝑤) = 1, it holds that we can write 𝑤 = 𝑥𝑦𝑧 where
|𝑦| ≥ 1, |𝑥𝑦| ≤ 𝑛0 and such that Φ𝑒(𝑥𝑦𝑘𝑧) = 1 for every 𝑘 ∈ ℕ.

Proof Idea:

The idea behind the proof is very simple (see Fig. 9.3). Let 𝑛0 be
twice the number of symbols that are used in the expression 𝑒, then
the only way that there is some 𝑤 with |𝑤| > 𝑛0 and Φ𝑒(𝑤) = 1 is that
𝑒 contains the ∗ (i.e. star) operator and that there is a nonempty sub-
string 𝑦 of 𝑤 that was matched by (𝑒′)∗ for some sub-expression 𝑒′ of
𝑒. We can now repeat 𝑦 any number of times and still get a matching
string.

⋆

P
The pumping lemma is a bit cumbersome to state,
but one way to remember it is that it simply says the
following: “if a string matching a regular expression is
long enough, one of its substrings must be matched using
the ∗ operator”.

Proof of Theorem 9.16. To prove the lemma formally, we use induction
on the length of the expression. Like all induction proofs, this is going
to be somewhat lengthy, but at the end of the day it directly follows
the intuition above that somewhere we must have used the star oper-
ation. Reading this proof, and in particular understanding how the
formal proof below corresponds to the intuitive idea above, is a very
good way to get more comfort with inductive proofs of this form.

restricted computational models 307

Our inductive hypothesis is that for an 𝑛 length expression, 𝑛0 =
2𝑛 satisfies the conditions of the lemma. The base case is when the
expression is a single symbol or that it is ∅ or "" in which case the
condition is satisfied just because there is no matching string of length
more than one. Otherwise, 𝑒 is of the form (a) 𝑒′|𝑒″, (b), (𝑒′)(𝑒″),
(c) or (𝑒′)∗ where in all these cases the subexpressions have fewer
symbols than 𝑒 and hence satisfy the induction hypothesis.

In case (a), every string 𝑤 matching 𝑒 must match either 𝑒′ or 𝑒″. In
the former case, since 𝑒′ satisfies the induction hypothesis, if |𝑤| > 𝑛0
then we can write 𝑤 = 𝑥𝑦𝑧 such that 𝑥𝑦𝑘𝑧 matches 𝑒′ for every 𝑘, and
hence this is matched by 𝑒 as well.

In case (b), if 𝑤 matches (𝑒′)(𝑒″). then we can write 𝑤 = 𝑤′𝑤″

where 𝑤′ matches 𝑒′ and 𝑤″ matches 𝑒″. Again we split to subcases. If
|𝑤′| > 2|𝑒′|, then by the induction hypothesis we can write 𝑤′ = 𝑥𝑦𝑧 of
the form above such that 𝑥𝑦𝑘𝑧 matches 𝑒′ for every 𝑘 and then 𝑥𝑦𝑘𝑧𝑤″

matches (𝑒′)(𝑒″). This completes the proof since |𝑥𝑦| ≤ 2|𝑒′| and so in
particular |𝑥𝑦| ≤ 2(|𝑒′| + |𝑒″|) ≤ 2|𝑒, and hence 𝑧𝑤″ can be play the role
of 𝑧 in the proof. Otherwise, if |𝑤′| ≤ 2|𝑒′| then since |𝑤| is larger than
2|𝑒| and 𝑤 = 𝑤′𝑤″ and 𝑒 = 𝑒′𝑒″, we get that |𝑤′| + |𝑤″| > 2(|𝑒′| + |𝑒″|).
Thus, if |𝑤′| ≤ 2|𝑒′| it must be that |𝑤″| > 2|𝑒″| and hence by the
induction hypothesis we can write 𝑤″ = 𝑥𝑦𝑧 such that 𝑥𝑦𝑘𝑧 matches
𝑒″ for every 𝑘 and |𝑥𝑦| ≤ 2|𝑒″|. Therefore we get that 𝑤′𝑥𝑦𝑘𝑧 matches
(𝑒′)(𝑒″) for every 𝑘 and since |𝑤′| ≤ 2|𝑒′|, |𝑤′𝑥𝑦| ≤ 2(|𝑒′| + |𝑒′|) and this
completes the proof since 𝑤′𝑥 can play the role of 𝑥 in the statement.

Now in the case (c), if 𝑤 matches (𝑒′)∗ then 𝑤 = 𝑤0 ⋯ 𝑤𝑡 where 𝑤𝑖
is a nonempty string that matches 𝑒′ for every 𝑖. If |𝑤0| > 2|𝑒′| then
we can use the same approach as in the concatenation case above.
Otherwise, we simply note that if 𝑥 is the empty string, 𝑦 = 𝑤0, and
𝑧 = 𝑤1 ⋯ 𝑤𝑡 then 𝑥𝑦𝑘𝑧 will match (𝑒′)∗ for every 𝑘.

�

R
Remark 9.17 — Recursive definitions and inductive
proofs. When an object is recursively defined (as in the
case of regular expressions) then it is natural to prove
properties of such objects by induction. That is, if we
want to prove that all objects of this type have prop-
erty 𝑃 , then it is natural to use an inductive steps that
says that if 𝑜′, 𝑜″, 𝑜‴ etc have property 𝑃 then so is an
object 𝑜 that is obtained by composing them.

Using the pumping lemma, we can easily prove Lemma 9.15:

Proof of Lemma 9.15. Suppose, towards the sake of contradiction,
that there is an expression 𝑒 such that Φ𝑒 = MATCHPAREN. Let

308 introduction to theoretical computer science

9 The Palindrome function is most often defined
without an explicit separator character ;, but the
version with such a separator is a bit cleaner and so
we use it here. This does not make much difference,
as one can easily encode the separator as a special
binary string instead.

𝑛0 be the number from Lemma 9.15 and let 𝑤 = ⟨𝑛0⟩𝑛0 (i.e., 𝑛0 left
parenthesis followed by 𝑛0 right parenthesis). Then we see that if
we write 𝑤 = 𝑥𝑦𝑧 as in Lemma 9.15, the condition |𝑥𝑦| ≤ 𝑛0 im-
plies that 𝑦 consists solely of left parenthesis. Hence the string 𝑥𝑦2𝑧
will contain more left parenthesis than right parenthesis. Hence
MATCHPAREN(𝑥𝑦2𝑧) = 0 but by the pumping lemma Φ𝑒(𝑥𝑦2𝑧) = 1,
contradicting our assumption that Φ𝑒 = MATCHPAREN.

�

The pumping lemma is a very useful tool to show that certain func-
tions are not computable by a regular language. However, it is not
an “if and only if” condition for regularity. There are non regular
functions which still satisfy the conditions of the pumping lemma.
To understand the pumping lemma, it is important to follow the or-
der of quantifiers in Theorem 9.16. In particular, the number 𝑛0 in
the statement of Theorem 9.16 depends on the regular expression (in
particular we can choose 𝑛0 to be twice the number of symbols in the
expression). So, if we want to use the pumping lemma to rule out the
existence of a regular expression 𝑒 computing some function 𝐹 , we
need to be able to choose an appropriate 𝑤 that can be arbitrarily large
and satisfies 𝐹(𝑤) = 1. This makes sense if you think about the intu-
ition behind the pumping lemma: we need 𝑤 to be large enough as to
force the use of the star operator.

Figure 9.4: A cartoon of a proof using the pumping
lemma that a function 𝐹 is not regular. The pumping
lemma states that if 𝐹 is regular then there exists a
number 𝑛0 such that for every large enough 𝑤 with
𝐹(𝑤) = 1, there exists a partition of 𝑤 to 𝑤 = 𝑥𝑦𝑧
satisfying certain conditions such that for every 𝑘 ∈
ℕ, 𝐹(𝑥𝑦𝑘𝑧) = 1. You can imagine a pumping-
lemma based proof as a game between you and the
adversary. Every there exists quantifier corresponds
to an object you are free to choose on your own (and
base your choice on previously chosen objects).
Every for every quantifier corresponds to an object the
adversary can choose arbitrarily (and again based on
prior choices) as long as it satisfies the conditions.
A valid proof corresponds to a strategy by which
no matter what the adversary does, you can win the
game by obtaining a contradiction which would be a
choice of 𝑘 that would result in 𝐹(𝑥𝑦𝑘𝑦) = 0, hence
violating the conclusion of the pumping lemma.

Solved Exercise 9.1 — Palindromes is not regular. Prove that the following
function over the alphabet {0, 1, ; } is not regular: PAL(𝑤) = 1 if and
only if 𝑤 = 𝑢; 𝑢𝑅 where 𝑢 ∈ {0, 1}∗ and 𝑢𝑅 denotes 𝑢 “reversed”: the
string 𝑢|𝑢|−1 ⋯ 𝑢0.9

�

restricted computational models 309

Solution:

We use the pumping lemma. Suppose towards the sake of con-
tradiction that there is a regular expression 𝑒 computing PAL,
and let 𝑛0 be the number obtained by the pumping lemma (The-
orem 9.16). Consider the string 𝑤 = 0𝑛0 ; 0𝑛0 . Since the reverse
of the all zero string is the all zero string, PAL(𝑤) = 1. Now, by
the pumping lemma, if PAL is computed by 𝑒, then we can write
𝑤 = 𝑥𝑦𝑧 such that |𝑥𝑦| ≤ 𝑛0, |𝑦| ≥ 1 and PAL(𝑥𝑦𝑘𝑧) = 1 for
every 𝑘 ∈ ℕ. In particular, it must hold that PAL(𝑥𝑧) = 1, but this
is a contradiction, since 𝑥𝑧 = 0𝑛0−|𝑦|; 0𝑛0 and so its two parts are
not of the same length and in particular are not the reverse of one
another.

�

For yet another example of a pumping-lemma based proof, see
Fig. 9.4 which illustrates a cartoon of the proof of the non-regularity
of the function 𝐹 ∶ {0, 1}∗ → {0, 1} which is defined as 𝐹(𝑥) = 1 iff
𝑥 = 0𝑛1𝑛 for some 𝑛 ∈ ℕ (i.e., 𝑥 consists of a string of consecutive
zeroes, followed by a string of consecutive ones of the same length).

9.5 OTHER SEMANTIC PROPERTIES OF REGULAR EXPRESSIONS

Regular expressions are widely used beyond just searching. For ex-
ample, regular expressions are often used to define tokens (such as
what is a valid variable identifier, or keyword) in programming lan-
guages. But they also have other uses. One nice example is the recent
work on the NetKAT network programming language. In recent years,
the world of networking moved from fixed topologies to “software
defined networks”, that are run by programmable switches that can
implement policies such as “if packet is secured by SSL then forward it
to A, otherwise forward it to B”. By its nature, one would want to use
a formalism for such policies that is guaranteed to always halt (and
quickly!) and that where it is possible to answer semantic questions
such as “does C see the packets moved from A to B” etc. The NetKAT
language uses a variant of regular expressions to achieve precisely
that.

Such applications use the fact that because regular expressions
are so restricted, we can not just solve the halting problem for them,
but also answer other semantic questions about regular languages.
Such semantic questions would not be solvable for Turing-complete
models due to Rice’s Theorem (Theorem 8.11). For example, we can
tell whether two regular expressions are equivalent, as well as whether
a regular expression computes the constant zero function.

https://goo.gl/oeJNuw

310 introduction to theoretical computer science

Theorem 9.18 — Emptiness of regular languages is computable. There is an
algorithm that given a regular expression 𝑒, outputs 1 if and only if
Φ𝑒 is the constant zero function.

Proof Idea:

The idea is that we can directly observe this from the structure of
the expression. The only way it will output the constant zero function
is if it has the form ∅ or is obtained by concatenating ∅ with other
expressions.

⋆

Proof of Theorem 9.18. Define a regular expression to be “empty” if it
computes the constant zero function. The algorithm simply follows
the following rules:

• If an expression has the form 𝜎 or "" then it is not empty.

• If 𝑒 is not empty then 𝑒|𝑒′ is not empty for every 𝑒′.

• If 𝑒 is not empty then 𝑒∗ is not empty.

• If 𝑒 and 𝑒′ are both not empty then 𝑒 𝑒′ is not empty.

• ∅ is empty.

Using these rules it is straightforward to come up with a recursive
algorithm to determine emptiness. We leave verifying the details to
the reader.

�

Theorem 9.19 — Equivalence of regular expressions is computable. Let
REGEQ ∶ {0, 1}∗ → {0, 1} be the function that on input (a string
representing) a pair of regular expressions 𝑒, 𝑒′, REGEQ(𝑒, 𝑒′) = 1
if and only if Φ𝑒 = Φ𝑒′ . Then REGEQ is computable.

Proof Idea:

The idea is to show that given a pair of regular expression 𝑒 and
𝑒′ we can find an expression 𝑒″ such that Φ𝑒″(𝑥) = 1 if and only if
Φ𝑒(𝑥) ≠ Φ(𝑒″)(𝑥). Therefore Φ𝑒″ is the constant zero function if and
only if 𝑒 and 𝑒′ are equivalent, and thus we can test for emptiness of 𝑒″

to determine equivalence of 𝑒 and 𝑒′.
⋆

Proof of Theorem 9.19. Theorem 9.18 above is actually a special case of
Theorem 9.19, since emptiness is the same as checking equivalence

restricted computational models 311

with the expression ∅. However we will prove ?? from Theorem 9.18.
The idea is that given 𝑒 and 𝑒′, we will compute an expression 𝑒″ such
that Φ𝑒″(𝑥) = 1 if and only if Φ𝑒(𝑥) ≠ Φ𝑒′(𝑥). One can see that 𝑒 is
equivalent to 𝑒′ if and only if 𝑒″ is empty.

To show that we can construct such a regular expression, not that
for every bits 𝑎, 𝑏 ∈ {0, 1}, 𝑎 ≠ 𝑏 if and only if

(𝑎 ∧ 𝑏) ∨ (𝑎 ∧ 𝑏) . (9.9)

Hence we need to construct 𝑒″ such that for every 𝑥,

Φ𝑒″(𝑥) = (Φ𝑒(𝑥) ∧ Φ𝑒′(𝑥)) ∨ (Φ𝑒(𝑥) ∧ Φ𝑒′(𝑥)) . (9.10)
To construct this expression, we need to show how given any pair

of expressions 𝑒 and 𝑒′, we can construct expressions 𝑒 ∧ 𝑒′ and 𝑒 that
compute the functions Φ𝑒 ∧ Φ𝑒′ and Φ𝑒 respectively. (Computing the
expression for 𝑒 ∨ 𝑒′ is straightforward using the | operation of regular
expressions.)

Specifically, by Lemma 9.14, regular functions are closed under
negation, which means that for every regular expression 𝑒, there is an
expression 𝑒 such that Φ𝑒(𝑥) = 1 − Φ𝑒(𝑥) for every 𝑥 ∈ {0, 1}∗. Now,
for every two expression 𝑒 and 𝑒′, the expression

𝑒 ∧ 𝑒′ = (𝑒|𝑒′) (9.11)

computes the AND of the two expressions. Given these two transfor-
mations, we see that for every regular expressions 𝑒 and 𝑒′ we can find
a regular expression 𝑒″ satisfying (9.10) such that 𝑒″ is empty if and
only if 𝑒 and 𝑒′ are equivalent.

�

9.6 CONTEXT FREE GRAMMARS

If you have ever written a program, you’ve experienced a syntax error.
You might also have had the experience of your program entering into
an infinite loop. What is less likely is that the compiler or interpreter
entered an infinite loop when trying to figure out if your program has
a syntax error.

When a person designs a programming language, they need to
determines its syntax. That is, they need to determine which strings
corresponds to valid programs, and which ones do not. A compiler
or interpreter is given a string 𝑥 as an input and needs to determine
whether 𝑥 corresponds to a valid program or it contains a syntax
error. To ensure that the compiler will always halt in this computa-
tion, language designers typically don’t use a general Turing-complete
mechanism to express their syntax but rather a restricted computa-
tional model. One of the most popular choices for such models is
context free grammars.

312 introduction to theoretical computer science

10 For simplicity we drop the condition that the
sequence does not have a leading zero, though it is
not hard to encode it in a context-free grammar as
well.

To explain context free grammars, let’s begin with a
canonical example. Let us try to define a function ARITH ∶
Σ∗ → {0, 1} that takes as input a string 𝑥 over the alphabet
Σ = {(,), +, −, ×, ÷, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9} and returns 1 if and only if
the string 𝑥 represents a valid arithmetic expression. Intuitively, we
build expressions by applying an operation to smaller expressions,
or enclosing them in parenthesis, where the “base case” corresponds
to expressions that are simply numbers. A bit more precisely, we can
make the following definitions:

• A digit is one of the symbols 0, 1, 2, 3, 4, 5, 6, 7, 8, 9.

• A number is a sequence of digits.10

• An operation is one of +, −, ×, ÷

• An expression has either the form “number”, the form “subexpression1
operation subexpression2”, or the form “(subexpression)”.

A context free grammar (CFG) is a formal way of specifying such
conditions. We can think of a CFG as a set of rules to generate valid
expressions. In the example above, there is a rule 𝑒𝑥𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛 ⇒
𝑒𝑥𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛 × 𝑒𝑥𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛 which tells us that if we have built two valid
expressions 𝑒𝑥𝑝1 and 𝑒𝑥𝑝2, then the expression 𝑒𝑥𝑝1 × 𝑒𝑥𝑝2 is valid
too.

Note that the rules of a context-free grammar are often recursive:
the rule 𝑒𝑥𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛 ⇒ 𝑒𝑥𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛 × 𝑒𝑥𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛 defines valid
expressions in terms of itself. For such a grammar to make sense, it
must have also some non-recursive rules, such as the rule 𝑛𝑢𝑚𝑏𝑒𝑟 ⇒
0.

We now make the formal definition of context-free grammars:

Definition 9.20 — Context Free Grammar. Let Σ be some finite set. A
context free grammar (CFG) over Σ is a triple (𝑉 , 𝑅, 𝑠) where:

• 𝑉 is a set disjoint from Σ of variables
• 𝑣 ∈ 𝑉 is the initial variable.
• 𝑅 is a set of rules, which are pairs (𝑣, 𝑧) with 𝑣 ∈ 𝑉 and 𝑧 ∈ (Σ ∪

𝑉)∗. We often write the rule (𝑣, 𝑧) as 𝑣 ⇒ 𝑧 and say that 𝑧 can be
derived from 𝑣.

� Example 9.21 — Context free grammar for arithmetic expressions. The
example above of well-formed arithmetic expressions can be cap-
tured formally by the following context free grammar:

restricted computational models 313

• The alphabet Σ is {(,), +, −, ×, ÷, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9}

• The variables are 𝑉 = {𝑒𝑥𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛 , 𝑛𝑢𝑚𝑏𝑒𝑟 , 𝑑𝑖𝑔𝑖𝑡 , 𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛}.

• The rules correspond the set 𝑅 containing the following pairs:

– 𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛 ⇒ +, 𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛 ⇒ −, 𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛 ⇒ ×, 𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛 ⇒
÷

– 𝑑𝑖𝑔𝑖𝑡 ⇒ 0,…, 𝑑𝑖𝑔𝑖𝑡 ⇒ 9
– 𝑛𝑢𝑚𝑏𝑒𝑟 ⇒ 𝑑𝑖𝑔𝑖𝑡
– 𝑛𝑢𝑚𝑏𝑒𝑟 ⇒ 𝑑𝑖𝑔𝑖𝑡 𝑛𝑢𝑚𝑏𝑒𝑟
– 𝑒𝑥𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛 ⇒ 𝑛𝑢𝑚𝑏𝑒𝑟
– 𝑒𝑥𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛 ⇒ 𝑒𝑥𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛 𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛 𝑒𝑥𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛
– 𝑒𝑥𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛 ⇒ (𝑒𝑥𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛)

• The starting variable is 𝑒𝑥𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛

People use many different notations to write context free grammars.
One of the most common notations is the Backus–Naur form. In this
notation we write a rule of the form 𝑣 ⇒ 𝑎 (where 𝑣 is a variable and
𝑎 is a string) in the form <v> := a. If we have several rules of the
form 𝑣 ↦ 𝑎, 𝑣 ↦ 𝑏, and 𝑣 ↦ 𝑐 then we can combine them as <v> :=

a|b|c. For example, the Backus-Naur description for the context free
grammar of Example 9.21 is the following (using ASCII equivalents
for operations):

operation := +|-|*|/

digit := 0|1|2|3|4|5|6|7|8|9

number := digit|digit number

expression := number|expression operation

expression|(expression)↪

Another example of a context free grammar is the “matching paren-
thesis” grammar, which can be represented in Backus-Naur as fol-
lows:

match := ""|match match|(match)

You can verify that a string over the alphabet { (,) } can be gen-
erated from this grammar (where match is the starting expression
and "" corresponds to the empty string) if and only if it consists of a
matching set of parenthesis.

9.6.1 Context-free grammars as a computational model
We can think of a CFG over the alphabet Σ as defining a function that
maps every string 𝑥 in Σ∗ to 1 or 0 depending on whether 𝑥 can be

https://goo.gl/R4qZji

314 introduction to theoretical computer science

11 As in the case of Definition 9.3 we can also use
language rather than function notation and say that a
language 𝐿 ⊆ Σ∗ is context free if the function 𝐹 such
that 𝐹(𝑥) = 1 iff 𝑥 ∈ 𝐿 is context free.

12 As usual we restrict attention to grammars over
{0, 1} although the proof extends to any finite alpha-
bet Σ.

generated by the rules of the grammars. We now make this definition
formally.

Definition 9.22 — Deriving a string from a grammar. If 𝐺 = (𝑉 , 𝑅, 𝑠) is a
context-free grammar over Σ, then for two strings 𝛼, 𝛽 ∈ (Σ ∪ 𝑉)∗

we say that 𝛽 can be derived in one step from 𝛼, denoted by 𝛼 ⇒𝐺 𝛽,
if we can obtain 𝛽 from 𝛼 by applying one of the rules of 𝐺. That is,
we obtain 𝛽 by replacing in 𝛼 one occurrence of the variable 𝑣 with
the string 𝑧, where 𝑣 ⇒ 𝑧 is a rule of 𝐺.

We say that 𝛽 can be derived from 𝛼, denoted by 𝛼 ⇒∗
𝐺 𝛽, if it

can be derived by some finite number 𝑘 of steps. That is, if there
are 𝛼1, … , 𝛼𝑘−1 ∈ (Σ ∪ 𝑉)∗, so that 𝛼 ⇒𝐺 𝛼1 ⇒𝐺 𝛼2 ⇒𝐺 ⋯ ⇒𝐺
𝛼𝑘−1 ⇒𝐺 𝛽.

We say that 𝑥 ∈ Σ∗ is matched by 𝐺 = (𝑉 , 𝑅, 𝑠) if 𝑥 can be de-
rived from the starting variable 𝑠 (i.e., if 𝑠 ⇒∗

𝐺 𝑥). We define the
function computed by (𝑉 , 𝑅, 𝑠) to be the map Φ𝑉 ,𝑅,𝑠 ∶ Σ∗ → {0, 1}
such that Φ𝑉 ,𝑅,𝑠(𝑥) = 1 iff 𝑥 is matched by (𝑉 , 𝑅, 𝑠). A function
𝐹 ∶ Σ∗ → {0, 1} is context free if 𝐹 = Φ𝑉 ,𝑅,𝑠 for some CFG (𝑉 , 𝑅, 𝑠).
11

A priori it might not be clear that the map Φ𝑉 ,𝑅,𝑠 is computable,
but it turns out that this is the case.

Theorem 9.23 — Context-free grammars always halt. For every CFG
(𝑉 , 𝑅, 𝑠) over {0, 1}, the function Φ𝑉 ,𝑅,𝑠 ∶ {0, 1}∗ → {0, 1} is
computable. 12

Proof. We only sketch the proof. We start with the observation we can
convert every CFG to an equivalent version of Chomsky normal form,
where all rules either have the form 𝑢 → 𝑣𝑤 for variables 𝑢, 𝑣, 𝑤 or the
form 𝑢 → 𝜎 for a variable 𝑢 and symbol 𝜎 ∈ Σ, plus potentially the
rule 𝑠 → "" where 𝑠 is the starting variable.

The idea behind such a transformation is to simply add new vari-
ables as needed, and so for example we can translate a rule such as
𝑣 → 𝑢𝜎𝑤 into the three rules 𝑣 → 𝑢𝑟, 𝑟 → 𝑡𝑤 and 𝑡 → 𝜎.

Using the Chomsky Normal form we get a natural recursive algo-
rithm for computing whether 𝑠 ⇒∗

𝐺 𝑥 for a given grammar 𝐺 and
string 𝑥. We simply try all possible guesses for the first rule 𝑠 → 𝑢𝑣
that is used in such a derivation, and then all possible ways to par-
tition 𝑥 as a concatenation 𝑥 = 𝑥′𝑥″. If we guessed the rule and the
partition correctly, then this reduces our task to checking whether
𝑢 ⇒∗

𝐺 𝑥′ and 𝑣 ⇒∗
𝐺 𝑥″, which (as it involves shorter strings) can

be done recursively. The base cases are when 𝑥 is empty or a single
symbol, and can be easily handled.

restricted computational models 315

�

R
Remark 9.24 — Parse trees. While we focus on the
task of deciding whether a CFG matches a string, the
algorithm to compute Φ𝑉 ,𝑅,𝑠 actually gives more in-
formation than that. That is, on input a string 𝑥, if
Φ𝑉 ,𝑅,𝑠(𝑥) = 1 then the algorithm yields the sequence
of rules that one can apply from the starting vertex 𝑠
to obtain the final string 𝑥. We can think of these rules
as determining a tree with 𝑠 being the root vertex and
the sinks (or leaves) corresponding to the substrings
of 𝑥 that are obtained by the rules that do not have a
variable in their second element. This tree is known
as the parse tree of 𝑥, and often yields very useful
information about the structure of 𝑥.
Often the first step in a compiler or interpreter for a
programming language is a parser that transforms the
source into the parse tree (also known as the abstract
syntax tree). There are also tools that can automati-
cally convert a description of a context-free grammars
into a parser algorithm that computes the parse tree of
a given string. (Indeed, the above recursive algorithm
can be used to achieve this, but there are much more
efficient versions, especially for grammars that have
particular forms, and programming language design-
ers often try to ensure their languages have these more
efficient grammars.)

9.6.2 The power of context free grammars
Context free grammars can capture every regular expression:

Theorem 9.25 — Context free grammars and regular expressions. Let 𝑒 be a
regular expression over {0, 1}, then there is a CFG (𝑉 , 𝑅, 𝑠) over
{0, 1} such that Φ𝑉 ,𝑅,𝑠 = Φ𝑒.

Proof. We will prove the theorem by induction on the length of 𝑒. If
𝑒 is an expression of one bit length, then 𝑒 = 0 or 𝑒 = 1, in which
case we leave it to the reader to verify that there is a (trivial) CFG that
computes it. Otherwise, we fall into one of the following case: case
1: 𝑒 = 𝑒′𝑒″, case 2: 𝑒 = 𝑒′|𝑒″ or case 3: 𝑒 = (𝑒′)∗ where in all cases
𝑒′, 𝑒″ are shorter regular expressions. By the induction hypothesis
have grammars (𝑉 ′, 𝑅′, 𝑠′) and (𝑉 ″, 𝑅″, 𝑠″) that compute Φ𝑒′ and Φ𝑒″

respectively. By renaming of variables, we can also assume without
loss of generality that 𝑉 ′ and 𝑉 ″ are disjoint.

In case 1, we can define the new grammar as follows: we add a new
starting variable 𝑠 ∉ 𝑉 ∪ 𝑉 ′ and the rule 𝑠 ↦ 𝑠′𝑠″. In case 2, we can
define the new grammar as follows: we add a new starting variable

https://en.wikipedia.org/wiki/Abstract_syntax_tree
https://en.wikipedia.org/wiki/Abstract_syntax_tree
https://en.wikipedia.org/wiki/LR_parser

316 introduction to theoretical computer science

𝑠 ∉ 𝑉 ∪ 𝑉 ′ and the rules 𝑠 ↦ 𝑠′ and 𝑠 ↦ 𝑠″. Case 3 will be the
only one that uses recursion. As before we add a new starting variable
𝑠 ∉ 𝑉 ∪ 𝑉 ′, but now add the rules 𝑠 ↦ "" (i.e., the empty string) and
also add, for every rule of the form (𝑠′, 𝛼) ∈ 𝑅′, the rule 𝑠 ↦ 𝑠𝛼 to 𝑅.

We leave it to the reader as (a very good!) exercise to verify that in
all three cases the grammars we produce capture the same function as
the original expression.

�

It turns out that CFG’s are strictly more powerful than regular
expressions. In particular, as we’ve seen, the “matching parenthesis”
function MATCHPAREN can be computed by a context free grammar,
whereas, as shown in Lemma 9.15, it cannot be computed by regular
expressions. Here is another example:

Solved Exercise 9.2 — Context free grammar for palindromes. Let PAL ∶
{0, 1, ; }∗ → {0, 1} be the function defined in Solved Exercise 9.1 where
PAL(𝑤) = 1 iff 𝑤 has the form 𝑢; 𝑢𝑅. Then PAL can be computed by a
context-free grammar

�

Solution:

A simple grammar computing PAL can be described using
Backus–Naur notation:

start := ; | 0 start 0 | 1 start 1

One can prove by induction that this grammar generates exactly
the strings 𝑤 such that PAL(𝑤) = 1.

�

A more interesting example is computing the strings of the form
𝑢; 𝑣 that are not palindromes:

Solved Exercise 9.3 — Non palindromes. Prove that there is a context free
grammar that computes NPAL ∶ {0, 1, ; }∗ → {0, 1} where NPAL(𝑤) =
1 if 𝑤 = 𝑢; 𝑣 but 𝑣 ≠ 𝑢𝑅.

�

Solution:

Using Backus–Naur notation we can describe such a grammar as
follows

palindrome := ; | 0 palindrome 0 | 1 palindrome 1

different := 0 palindrome 1 | 1 palindrome 0

start := different | 0 start | 1 start | start

0 | start 1↪

restricted computational models 317

In words, this means that we can characterize a string 𝑤 such
that NPAL(𝑤) = 1 as having the following form

𝑤 = 𝛼𝑏𝑢; 𝑢𝑅𝑏′𝛽 (9.12)

where 𝛼, 𝛽, 𝑢 are arbitrary strings and 𝑏 ≠ 𝑏′. Hence we can
generate such a string by first generating a palindrome 𝑢; 𝑢𝑅

(palindrome variable), then adding either 0 on the right and 1
on the left to get something that is not a palindrome (different
variable), and then we can add arbitrary number of 0’s and 1’s on
either end (the start variable).

�

9.6.3 Limitations of context-free grammars (optional)
Even though context-free grammars are more powerful than regular
expressions, there are some simple languages that are not captured
by context free grammars. One tool to show this is the context-free
grammar analog of the “pumping lemma” (Theorem 9.16):

Theorem 9.26 — Context-free pumping lemma. Let (𝑉 , 𝑅, 𝑠) be a CFG
over Σ, then there is some 𝑛0 ∈ ℕ such that for every 𝑥 ∈ Σ∗ with
|𝑥| > 𝑛0, if Φ𝑉 ,𝑅,𝑠(𝑥) = 1 then 𝑥 = 𝑎𝑏𝑐𝑑𝑒 such that |𝑏|+|𝑐|+|𝑑| ≤ 𝑛1,
|𝑏| + |𝑑| ≥ 1, and Φ𝑉 ,𝑅,𝑠(𝑎𝑏𝑘𝑐𝑑𝑘𝑒) = 1 for every 𝑘 ∈ ℕ.

P
The context-free pumping lemma is even more cum-
bersome to state than its regular analog, but you can
remember it as saying the following: “If a long enough
string is matched by a grammar, there must be a variable
that is repeated in the derivation.”

Proof of Theorem 9.26. We only sketch the proof. The idea is that if the
total number of symbols in the rules 𝑅 is 𝑘0, then the only way to get
|𝑥| > 𝑘0 with Φ𝑉 ,𝑅,𝑠(𝑥) = 1 is to use recursion. That is, there must be
some variable 𝑣 ∈ 𝑉 such that we are able to derive from 𝑣 the value
𝑏𝑣𝑑 for some strings 𝑏, 𝑑 ∈ Σ∗, and then further on derive from 𝑣 some
string 𝑐 ∈ Σ∗ such that 𝑏𝑐𝑑 is a substring of 𝑥. If we try to take the
minimal such 𝑣, then we can ensure that |𝑏𝑐𝑑| is at most some constant
depending on 𝑘0 and we can set 𝑛0 to be that constant (𝑛0 = 10⋅ |𝑅| ⋅𝑘0
will do, since we will not need more than |𝑅| applications of rules,
and each such application can grow the string by at most 𝑘0 symbols).

Thus by the definition of the grammar, we can repeat the derivation
to replace the substring 𝑏𝑐𝑑 in 𝑥 with 𝑏𝑘𝑐𝑑𝑘 for every 𝑘 ∈ ℕ while
retaining the property that the output of Φ𝑉 ,𝑅,𝑠 is still one.

318 introduction to theoretical computer science

�

Using Theorem 9.26 one can show that even the simple function
𝐹 ∶ {0, 1}∗ → {0, 1} defined as follows:

𝐹(𝑥) =
⎧{
⎨{⎩

1 𝑥 = 𝑤𝑤 for some 𝑤 ∈ {0, 1}∗

0 otherwise
(9.13)

is not contaxt free. (In contrast, the function 𝐺 ∶ {0, 1}∗ → {0, 1}
defined as 𝐺(𝑥) = 1 iff 𝑥 = 𝑤0𝑤1 ⋯ 𝑤𝑛−1𝑤𝑛−1𝑤𝑛−2 ⋯ 𝑤0 for some
𝑤 ∈ {0, 1}∗ and 𝑛 = |𝑤| is context free, can you see why?.)

Solved Exercise 9.4 — Equality is not context-free. Let EQ ∶ {0, 1, ; }∗ → {0, 1}
be the function such that EQ(𝑥) = 1 if and only if 𝑥 = 𝑢; 𝑢 for some
𝑢 ∈ {0, 1}∗. Then EQ is not context free.

�

Solution:

We use the context-free pumping lemma. Suppose towards the
sake of contradiction that there is a grammar 𝐺 that computes EQ,
and let 𝑛0 be the constant obtained from Theorem 9.26.

Consider the string 𝑥 = 1𝑛00𝑛0 ; 1𝑛00𝑛0 , and write it as 𝑥 = 𝑎𝑏𝑐𝑑𝑒
as per Theorem 9.26, with |𝑏𝑐𝑑| ≤ 𝑛0 and with |𝑏| + |𝑑| ≥ 1. By The-
orem 9.26, it should hold that EQ(𝑎𝑐𝑒) = 1. However, by case anal-
ysis this can be shown to be a contradiction.

First of all, unless 𝑏 is on the left side of the ; separator and 𝑑 is
on the right side, dropping 𝑏 and 𝑑 will definitely make the two
parts different. But if it is the case that 𝑏 is on the left side and 𝑑 is
on the right side, then by the condition that |𝑏𝑐𝑑| ≤ 𝑛0 we know
that 𝑏 is a string of only zeros and 𝑑 is a string of only ones. If we
drop 𝑏 and 𝑑 then since one of them is non empty, we get that there
are either less zeroes on the left side than on the right side, or there
are less ones on the right side than on the left side. In either case,
we get that EQ(𝑎𝑐𝑒) = 0, obtaining the desired contradiction.

�

9.7 SEMANTIC PROPERTIES OF CONTEXT FREE LANGUAGES

As in the case of regular expressions, the limitations of context free
grammars do provide some advantages. For example, emptiness of
context free grammars is decidable:

Theorem 9.27 — Emptiness for CFG’s is decidable. There is an algorithm
that on input a context-free grammar 𝐺, outputs 1 if and only if Φ𝐺
is the constant zero function.

Proof Idea:

restricted computational models 319

The proof is easier to see if we transform the grammar to Chomsky
Normal Form as in Theorem 9.23. Given a grammar 𝐺, we can recur-
sively define a non-terminal variable 𝑣 to be non empty if there is either
a rule of the form 𝑣 ⇒ 𝜎, or there is a rule of the form 𝑣 ⇒ 𝑢𝑤 where
both 𝑢 and 𝑤 are non empty. Then the grammar is non empty if and
only if the starting variable 𝑠 is non-empty.

⋆

Proof of Theorem 9.27. We assume that the grammar 𝐺 in Chomsky
Normal Form as in Theorem 9.23. We consider the following proce-
dure for marking variables as “non empty”:

1. We start by marking all variables 𝑣 that are involved in a rule of the
form 𝑣 ⇒ 𝜎 as non empty.

2. We then continue to mark 𝑣 as non empty if it is involved in a rule
of the form 𝑣 ⇒ 𝑢𝑤 where 𝑢, 𝑤 have been marked before.

We continue this way until we cannot mark any more variables. We
then declare that the grammar is empty if and only if 𝑠 has not been
marked. To see why this is a valid algorithm, note that if a variable 𝑣
has been marked as “non empty” then there is some string 𝛼 ∈ Σ∗ that
can be derived from 𝑣. On the other hand, if 𝑣 has not been marked,
then every sequence of derivations from 𝑣 will always have a variable
that has not been replaced by alphabet symbols. Hence in particular
Φ𝐺 is the all zero function if and only if the starting variable 𝑠 is not
marked “non empty”.

�

9.7.1 Uncomputability of context-free grammar equivalence (optional)
By analogy to regular expressions, one might have hoped to get an
algorithm for deciding whether two given context free grammars
are equivalent. Alas, no such luck. It turns out that the equivalence
problem for context free grammars is uncomputable. This is a direct
corollary of the following theorem:

Theorem 9.28 — Fullness of CFG’s is uncomputable. For every set Σ, let
CFGFULLΣ be the function that on input a context-free grammar 𝐺
over Σ, outputs 1 if and only if 𝐺 computes the constant 1 function.
Then there is some finite Σ such that CFGFULLΣ is uncomputable.

Theorem 9.28 immediately implies that equivalence for context-free
grammars is uncomputable, since computing “fullness” of a grammar
𝐺 over some alphabet Σ = {𝜎0, … , 𝜎𝑘−1} corresponds to checking
whether 𝐺 is equivalent to the grammar 𝑠 ⇒ ""|𝑠𝜎0| ⋯ |𝑠𝜎𝑘−1. Note
that Theorem 9.28 and Theorem 9.27 together imply that context-free

320 introduction to theoretical computer science

grammars, unlike regular expressions, are not closed under comple-
ment. (Can you see why?) Since we can encode every element of Σ
using ⌈log |Σ|⌉ bits (and this finite encoding can be easily carried out
within a grammar) Theorem 9.28 implies that fullness is also uncom-
putable for grammars over the binary alphabet.

Proof Idea:

We prove the theorem by reducing from the Halting problem. To
do that we use the notion of configurations of NAND-TM programs, as
defined in Definition 7.19. Recall that a configuration of a program 𝑃 is
a binary string 𝑠 that encodes all the information about the program in
the current iteration.

We define Σ to be {0, 1} plus some separator characters and define
INVALID𝑃 ∶ Σ∗ → {0, 1} to be the function that maps every string
𝐿 ∈ Σ∗ to 1 if and only 𝐿 does not encode a sequence of configurations
that correspond to a valid halting history of the computation of 𝑃 on
the empty input.

The heart of the proof is to show that INVALID𝑃 is context-free.
Once we do that, we see that 𝑃 halts on the empty input if and only if
INVALID𝑃 (𝐿) = 1 for every 𝐿. To show that, we will encode the list
in a special way that makes it amenable to deciding via a context-free
grammar. Specifically we will reverse all the odd-numbered strings.

⋆

Proof of Theorem 9.28. We only sketch the proof. We will show that if
we can compute CFGFULL then we can solve HALTONZERO, which
has been proven uncomputable in Theorem 8.6. Let 𝑀 be an input
Turing machine for HALTONZERO. We will use the notion of configu-
rations of a Turing machine, as defined in Definition 7.19.

Recall that a configuration of Turing machine 𝑀 and input 𝑥 cap-
tures the full state of 𝑀 at some point of the computation. The partic-
ular details of configurations are not so important, but what you need
to remember is that:

• A configuration can be encoded by a binary string 𝜎 ∈ {0, 1}∗.

• The initial configuration of 𝑀 on the input 0 is some fixed string.

• A halting configuration will have the value a certain state (which can
be easily “read off” from it) set to 1.

• If 𝜎 is a configuration at some step 𝑖 of the computation, we denote
by NEXT𝑀(𝜎) as the configuration at the next step. NEXT𝑀(𝜎) is
a string that agrees with 𝜎 on all but a constant number of coor-
dinates (those encoding the position corresponding to the head
position and the two adjacent ones). On those coordinates, the
value of NEXT𝑀(𝜎) can be computed by some finite function.

restricted computational models 321

13 Reversing the odd-numbered block is a technical
trick to help with making the function INVALID𝑀
we’ll define below context free.

We will let the alphabet Σ = {0, 1} ∪ {‖, #}. A computation his-
tory of 𝑀 on the input 0 is a string 𝐿 ∈ Σ that corresponds to a list
‖𝜎0#𝜎1‖𝜎2#𝜎3 ⋯ 𝜎𝑡−2‖𝜎𝑡−1# (i.e., ‖ comes before an even numbered
block, and ‖ comes before an odd numbered one) such that if 𝑖 is even
then 𝜎𝑖 is the string encoding the configuration of 𝑃 on input 0 at the
beginning of its 𝑖-th iteration, and if 𝑖 is odd then it is the same except
the string is reversed. (That is, for odd 𝑖, 𝑟𝑒𝑣(𝜎𝑖) encodes the configura-
tion of 𝑃 on input 0 at the beginning of its 𝑖-th iteration.)13

We now define INVALID𝑀 ∶ Σ∗ → {0, 1} as follows:

INVALID𝑀(𝐿) =
⎧{
⎨{⎩

0 𝐿 is a valid computation history of 𝑀 on 0
1 otherwise

(9.14)
We will show the following claim:
CLAIM: INVALID𝑀 is context-free.
The claim implies the theorem. Since 𝑀 halts on 0 if and only if

there exists a valid computation history, INVALID𝑀 is the constant
one function if and only if 𝑀 does not halt on 0. In particular, this
allows us to reduce determining whether 𝑀 halts on 0 to determining
whether the grammar 𝐺𝑀 corresponding to INVALID𝑀 is full.

We now turn to the proof of the claim. We will not show all the
details, but the main point INVALID𝑀(𝐿) = 1 if at least one of the
following three conditions hold:

1. 𝐿 is not of the right format, i.e. not of the form ⟨binary-string⟩#⟨binary-string⟩‖⟨binary-string⟩# ⋯.

2. 𝐿 contains a substring of the form ‖𝜎#𝜎′‖ such that
𝜎′ ≠ 𝑟𝑒𝑣(NEXT𝑃 (𝜎))

3. 𝐿 contains a substring of the form #𝜎‖𝜎′# such that
𝜎′ ≠ NEXT𝑃 (𝑟𝑒𝑣(𝜎))

Since context-free functions are closed under the OR operation, the
claim will follow if we show that we can verify conditions 1, 2 and 3
via a context-free grammar.

For condition 1 this is very simple: checking that 𝐿 is of the correct
format can be done using a regular expression. Since regular expres-
sions are closed under negation, this means that checking that 𝐿 is not
of this format can also be done by a regular expression and hence by a
context-free grammar.

For conditions 2 and 3, this follows via very similar reasoning to
that showing that the function 𝐹 such that 𝐹(𝑢#𝑣) = 1 iff 𝑢 ≠ 𝑟𝑒𝑣(𝑣)
is context-free, see Solved Exercise 9.3. After all, the NEXT𝑀 function
only modifies its input in a constant number of places. We leave filling
out the details as an exercise to the reader. Since INVALID𝑀(𝐿) = 1

322 introduction to theoretical computer science

if and only if 𝐿 satisfies one of the conditions 1., 2. or 3., and all three
conditions can be tested for via a context-free grammar, this completes
the proof of the claim and hence the theorem.

�

9.8 SUMMARY OF SEMANTIC PROPERTIES FOR REGULAR EX-
PRESSIONS AND CONTEXT-FREE GRAMMARS

To summarize, we can often trade expressiveness of the model for
amenability to analysis. If we consider computational models that are
not Turing complete, then we are sometimes able to bypass Rice’s The-
orem and answer certain semantic questions about programs in such
models. Here is a summary of some of what is known about semantic
questions for the different models we have seen.

Table 9.1: Computability of semantic properties

Model Halting Emptiness Equivalence

Regular expressions Computable Computable Computable
Context free grammars Computable Computable Uncomputable
Turing-complete models UncomputableUncomputable Uncomputable

R
Remark 9.29 — Unrestricted Grammars (optional). The
reason we call context free grammars “context free” is
because if we have a rule of the form 𝑣 ↦ 𝑎 it means
that we can always replace 𝑣 with the string 𝑎, no mat-
ter the context in which 𝑣 appears. More generally, we
might want to consider cases where our replacement
rules depend on the context.
This gives rise to the notion of general grammars that
allow rules of the form 𝑎 ⇒ 𝑏 where both 𝑎 and 𝑏 are
strings over (𝑉 ∪ Σ)∗. The idea is that if, for example,
we wanted to enforce the condition that we only apply
some rule such as 𝑣 ↦ 0𝑤1 when 𝑣 is surrounded by
three zeroes on both sides, then we could do so by
adding a rule of the form 000𝑣000 ↦ 0000𝑤1000 (and
of course we can add much more general conditions).
Alas, this generality comes at a cost - these general
grammars are Turing complete and hence their halting
problem is undecidable.

✓ Lecture Recap

restricted computational models 323

• The uncomputability of the Halting problem for
general models motivates the definition of re-
stricted computational models.

• In some restricted models we can answer semantic
questions such as: does a given program terminate,
or do two programs compute the same function?

• Regular expressions are a restricted model of com-
putation that is often useful to capture tasks of
string matching. We can test efficiently whether
an expression matches a string, as well as answer
questions such as Halting and Equivalence.

• Context free grammars is a stronger, yet still not Tur-
ing complete, model of computation. The halting
problem for context free grammars is computable,
but equivalence is not computable.

9.9 EXERCISES

Exercise 9.1 — Closure properties of regular functions. Suppose that 𝐹, 𝐺 ∶
{0, 1}∗ → {0, 1} are regular. For each one of the following defini-
tions of the function 𝐻 , either prove that 𝐻 is always regular or give a
counterexample for regular 𝐹, 𝐺 that would make 𝐻 not regular.

1. 𝐻(𝑥) = 𝐹(𝑥) ∨ 𝐺(𝑥).

2. 𝐻(𝑥) = 𝐹(𝑥) ∧ 𝐺(𝑥)

3. 𝐻(𝑥) = NAND(𝐹(𝑥), 𝐺(𝑥)).

4. 𝐻(𝑥) = 𝐹(𝑥𝑅) where 𝑥𝑅 is the reverse of 𝑥: 𝑥𝑅 = 𝑥𝑛−1𝑥𝑛−2 ⋯ 𝑥𝑜 for
𝑛 = |𝑥|.

5. 𝐻(𝑥) =
⎧{
⎨{⎩

1 𝑥 = 𝑢𝑣 s.t. 𝐹(𝑢) = 𝐺(𝑣) = 1
0 otherwise

6. 𝐻(𝑥) =
⎧{
⎨{⎩

1 𝑥 = 𝑢𝑢 s.t. 𝐹(𝑢) = 𝐺(𝑢) = 1
0 otherwise

7. 𝐻(𝑥) =
⎧{
⎨{⎩

1 𝑥 = 𝑢𝑢𝑅 s.t. 𝐹(𝑢) = 𝐺(𝑢) = 1
0 otherwise

�

Exercise 9.2 — Closure properties of context-free functions. Suppose that
𝐹, 𝐺 ∶ {0, 1}∗ → {0, 1} are context free. For each one of the following
definitions of the function 𝐻 , either prove that 𝐻 is always context
free or give a counterexample for regular 𝐹, 𝐺 that would make 𝐻 not
context free.

1. 𝐻(𝑥) = 𝐹(𝑥) ∨ 𝐺(𝑥).

324 introduction to theoretical computer science

2. 𝐻(𝑥) = 𝐹(𝑥) ∧ 𝐺(𝑥)

3. 𝐻(𝑥) = NAND(𝐹(𝑥), 𝐺(𝑥)).

4. 𝐻(𝑥) = 𝐹(𝑥𝑅) where 𝑥𝑅 is the reverse of 𝑥: 𝑥𝑅 = 𝑥𝑛−1𝑥𝑛−2 ⋯ 𝑥𝑜 for
𝑛 = |𝑥|.

5. 𝐻(𝑥) =
⎧{
⎨{⎩

1 𝑥 = 𝑢𝑣 s.t. 𝐹(𝑢) = 𝐺(𝑣) = 1
0 otherwise

6. 𝐻(𝑥) =
⎧{
⎨{⎩

1 𝑥 = 𝑢𝑢 s.t. 𝐹(𝑢) = 𝐺(𝑢) = 1
0 otherwise

7. 𝐻(𝑥) =
⎧{
⎨{⎩

1 𝑥 = 𝑢𝑢𝑅 s.t. 𝐹(𝑢) = 𝐺(𝑢) = 1
0 otherwise

�

Exercise 9.3 Prove that the function 𝐹 ∶ {0, 1}∗ → {0, 1} such that
𝐹(𝑥) = 1 if and only if |𝑥| is a power of two is not context free.

�

9.10 BIBLIOGRAPHICAL NOTES

The relation of regular expressions with finite automata is a beau-
tiful topic, on which we only touch upon in this texts. It is covered
more extensively in [hopcroft ; Sip97; Koz97]. These texts also discuss
topics such as non deterministic finite automata (NFA) and the relation
between context-free grammars and pushdown automata. The Chom-
sky Hierarchy is a hierarchy of grammars from the least restrictive
(most powerful) Type 0 grammars, which correspond to recursively
enumerable languages (see Definition 8.14) to the most restrictive Type
3 grammars, which correspond to regular languages. Context-free
languages correspond to Type 2 grammars. Type 1 grammars are con-
text sensitive grammars. These are more powerful than context-free
grammars but still less powerful than Turing machines. In particular
functions/languages corresponding to context-sensitive grammars are
always computable, and in fact can be computed by a linear bounded
automatons which are non-deterministic algorithms that take 𝑂(𝑛)
space. For this reason, the class of functions/languages corresponding
to context-sensitive grammars is also known as the complexity class
NSPACE𝑂(𝑛); we discuss space-bounded complexity in Chapter 16).
While Rice’s Theorem tells us that we cannot compute any non-trivial
semantic property of Type 0 grammars, the situation is more complex
for other types of grammars: some semantic properties can be deter-
mined and some cannot, depending on the grammar’s place in the
hierarchy.

https://en.wikipedia.org/wiki/Chomsky_hierarchy
https://en.wikipedia.org/wiki/Chomsky_hierarchy
https://en.wikipedia.org/wiki/Linear_bounded_automaton
https://en.wikipedia.org/wiki/Linear_bounded_automaton

	II Uniform computation
	Restricted computational models
	Turing completeness as a bug
	Regular expressions
	Deterministic finite automata, and efficient matching of regular expressions (optional)
	Matching regular expressions using constant memory
	Deterministic Finite Automata
	Regular functions are closed under complement

	Limitations of regular expressions
	Other semantic properties of regular expressions
	Context free grammars
	Context-free grammars as a computational model
	The power of context free grammars
	Limitations of context-free grammars (optional)

	Semantic properties of context free languages
	Uncomputability of context-free grammar equivalence (optional)

	Summary of semantic properties for regular expressions and context-free grammars
	Exercises
	Bibliographical notes

