
4
Syntactic sugar, and computing every function

“[In 1951] I had a running compiler and nobody would touch it because,
they carefully told me, computers could only do arithmetic; they could not do
programs.”, Grace Murray Hopper, 1986.

“Syntactic sugar causes cancer of the semicolon.”, Alan Perlis, 1982.

The computational models we considered thus far are as “bare
bones” as they come. For example, our NAND-CIRC “programming
language” has only the single operation foo = NAND(bar,blah). In
this chapter we will see that these simple models are actually equiv-
alent to more sophisticated ones. The key observation is that we can
implement more complex features using our basic building blocks,
and then use these new features themselves as building blocks for
even more sophisticated features. This is known as “syntactic sugar”
in the field of programming language design since we are not modi-
fying the underlying programming model itself, but rather we merely
implement new features by syntactically transforming a program that
uses such features into one that doesn’t.

This chapter provides a “toolkit” that can be used to show that
many functions can be computed by NAND-CIRC programs, and
hence also by Boolean circuits. We will also use this toolkit to prove
a fundamental theorem: every finite function 𝑓 ∶ {0, 1}𝑛 → {0, 1}𝑚

can be computed by a Boolean circuit, see Theorem 4.13 below. While
the syntactic sugar toolkit is important in its own right, Theorem 4.13
can also be proven directly without using this toolkit. We present this
alternative proof in Section 4.5. See Fig. 4.1 for an outline of the results
of this chapter.

This chapter: A non-mathy overview
In this chapter, we will see our first major result: every fi-
nite function can be computed by some Boolean circuit (see
Theorem 4.13 and Big Idea 5). This is sometimes known as

Compiled on 12.6.2023 00:05

Learning Objectives:
• Get comfortable with syntactic sugar or

automatic translation of higher-level logic to
low-level gates.

• Learn proof of major result: every finite
function can be computed by a Boolean
circuit.

• Start thinking quantitatively about the
number of lines required for computation.

160 introduction to theoretical computer science

Figure 4.1: An outline of the results of this chapter. In
Section 4.1 we give a toolkit of “syntactic sugar” trans-
formations showing how to implement features such
as programmer-defined functions and conditional
statements in NAND-CIRC. We use these tools in
Section 4.3 to give a NAND-CIRC program (or alter-
natively a Boolean circuit) to compute the LOOKUP
function. We then build on this result to show in Sec-
tion 4.4 that NAND-CIRC programs (or equivalently,
Boolean circuits) can compute every finite function.
An alternative direct proof of the same result is given
in Section 4.5.

the “universality” of AND, OR, and NOT (and, using the
equivalence of Chapter 3, of NAND as well)
Despite being an important result, Theorem 4.13 is actually
not that hard to prove. Section 4.5 presents a relatively sim-
ple direct proof of this result. However, in Section 4.1 and
Section 4.3 we derive this result using the concept of “syntac-
tic sugar” (see Big Idea 4). This is an important concept for
programming languages theory and practice. The idea be-
hind “syntactic sugar” is that we can extend a programming
language by implementing advanced features from its basic
components. For example, we can take the AON-CIRC and
NAND-CIRC programming languages we saw in Chapter 3,
and extend them to achieve features such as user-defined
functions (e.g., def Foo(...)), conditional statements (e.g.,
if blah ...), and more. Once we have these features, it
is not that hard to show that we can take the “truth table”
(table of all inputs and outputs) of any function, and use that
to create an AON-CIRC or NAND-CIRC program that maps
each input to its corresponding output.
We will also get our first glimpse of quantitative measures in
this chapter. While Theorem 4.13 tells us that every func-
tion can be computed by some circuit, the number of gates
in this circuit can be exponentially large. (We are not using
here “exponentially” as some colloquial term for “very very
big” but in a very precise mathematical sense, which also
happens to coincide with being very very big.) It turns out
that some functions (for example, integer addition and multi-

syntactic sugar, and computing every function 161

plication) can be in fact computed using far fewer gates. We
will explore this issue of “gate complexity” more deeply in
Chapter 5 and following chapters.

4.1 SOME EXAMPLES OF SYNTACTIC SUGAR

We now present some examples of “syntactic sugar” transformations
that we can use in constructing straightline programs or circuits. We
focus on the straight-line programming language view of our computa-
tional models, and specifically (for the sake of concreteness) on the
NAND-CIRC programming language. This is convenient because
many of the syntactic sugar transformations we present are easiest to
think about in terms of applying “search and replace” operations to
the source code of a program. However, by Theorem 3.19, all of our
results hold equally well for circuits, whether ones using NAND gates
or Boolean circuits that use the AND, OR, and NOT operations. Enu-
merating the examples of such syntactic sugar transformations can be
a little tedious, but we do it for two reasons:

1. To convince you that despite their seeming simplicity and limita-
tions, simple models such as Boolean circuits or the NAND-CIRC
programming language are actually quite powerful.

2. So you can realize how lucky you are to be taking a theory of com-
putation course and not a compilers course… :)

4.1.1 User-defined procedures
One staple of almost any programming language is the ability to
define and then execute procedures or subroutines. (These are often
known as functions in some programming languages, but we prefer
the name procedures to avoid confusion with the function that a pro-
gram computes.) The NAND-CIRC programming language does
not have this mechanism built in. However, we can achieve the same
effect using the time-honored technique of “copy and paste”. Specifi-
cally, we can replace code which defines a procedure such as

def Proc(a,b):

proc_code

return c

some_code

f = Proc(d,e)

some_more_code

with the following code where we “paste” the code of Proc

162 introduction to theoretical computer science

some_code

proc_code'

some_more_code

and where proc_code' is obtained by replacing all occurrences
of a with d, b with e, and c with f. When doing that we will need to
ensure that all other variables appearing in proc_code' don’t interfere
with other variables. We can always do so by renaming variables to
new names that were not used before. The above reasoning leads to
the proof of the following theorem:

Theorem 4.1 — Procedure definition syntatic sugar. Let NAND-CIRC-
PROC be the programming language NAND-CIRC augmented
with the syntax above for defining procedures. Then for every
NAND-CIRC-PROC program 𝑃 , there exists a standard (i.e.,
“sugar-free”) NAND-CIRC program 𝑃 ′ that computes the same
function as 𝑃 .

R
Remark 4.2 — No recursive procedure. NAND-CIRC-
PROC only allows non-recursive procedures. In partic-
ular, the code of a procedure Proc cannot call Proc but
only use procedures that were defined before it. With-
out this restriction, the above “search and replace”
procedure might never terminate and Theorem 4.1
would not be true.

Theorem 4.1 can be proven using the transformation above, but
since the formal proof is somewhat long and tedious, we omit it here.

■ Example 4.3 — Computing Majority from NAND using syntactic sugar. Pro-
cedures allow us to express NAND-CIRC programs much more
cleanly and succinctly. For example, because we can compute
AND, OR, and NOT using NANDs, we can compute the Majority
function as follows:

def NOT(a):

return NAND(a,a)

def AND(a,b):

temp = NAND(a,b)

return NOT(temp)

def OR(a,b):

temp1 = NOT(a)

temp2 = NOT(b)

syntactic sugar, and computing every function 163

return NAND(temp1,temp2)

def MAJ(a,b,c):

and1 = AND(a,b)

and2 = AND(a,c)

and3 = AND(b,c)

or1 = OR(and1,and2)

return OR(or1,and3)

print(MAJ(0,1,1))

1

Fig. 4.2 presents the “sugar-free” NAND-CIRC program (and
the corresponding circuit) that is obtained by “expanding out” this
program, replacing the calls to procedures with their definitions.

 Big Idea 4 Once we show that a computational model 𝑋 is equiv-
alent to a model that has feature 𝑌 , we can assume we have 𝑌 when
showing that a function 𝑓 is computable by 𝑋.

Figure 4.2: A standard (i.e., “sugar-free”) NAND-
CIRC program that is obtained by expanding out the
procedure definitions in the program for Majority
of Example 4.3. The corresponding circuit is on
the right. Note that this is not the most efficient
NAND circuit/program for majority: we can save on
some gates by “shortcutting” steps where a gate 𝑢
computes NAND(𝑣, 𝑣) and then a gate 𝑤 computes
NAND(𝑢, 𝑢) (as indicated by the dashed green
arrows in the above figure).

R
Remark 4.4 — Counting lines. While we can use syn-
tactic sugar to present NAND-CIRC programs in more
readable ways, we did not change the definition of
the language itself. Therefore, whenever we say that
some function 𝑓 has an 𝑠-line NAND-CIRC program
we mean a standard “sugar-free” NAND-CIRC pro-
gram, where all syntactic sugar has been expanded
out. For example, the program of Example 4.3 is a
12-line program for computing the MAJ function,

164 introduction to theoretical computer science

even though it can be written in fewer lines using
NAND-CIRC-PROC.

4.1.2 Proof by Python (optional)
We can write a Python program that implements the proof of Theo-
rem 4.1. This is a Python program that takes a NAND-CIRC-PROC
program 𝑃 that includes procedure definitions and uses simple
“search and replace” to transform 𝑃 into a standard (i.e., “sugar-
free”) NAND-CIRC program 𝑃 ′ that computes the same function as
𝑃 without using any procedures. The idea is simple: if the program 𝑃
contains a definition of a procedure Proc of two arguments x and y,
then whenever we see a line of the form foo = Proc(bar,blah), we
can replace this line by:

1. The body of the procedure Proc (replacing all occurrences of x and
y with bar and blah respectively).

2. A line foo = exp, where exp is the expression following the re-
turn statement in the definition of the procedure Proc.

To make this more robust we add a prefix to the internal variables
used by Proc to ensure they don’t conflict with the variables of 𝑃 ;
for simplicity we ignore this issue in the code below though it can be
easily added.

The code of the Python function desugar below achieves such a
transformation.

Fig. 4.2 shows the result of applying desugar to the program of Ex-
ample 4.3 that uses syntactic sugar to compute the Majority function.
Specifically, we first apply desugar to remove usage of the OR func-
tion, then apply it to remove usage of the AND function, and finally
apply it a third time to remove usage of the NOT function.

R
Remark 4.5 — Parsing function definitions (optional). The
function desugar in Fig. 4.3 assumes that it is given
the procedure already split up into its name, argu-
ments, and body. It is not crucial for our purposes to
describe precisely how to scan a definition and split it
up into these components, but in case you are curious,
it can be achieved in Python via the following code:

def parse_func(code):
"""Parse a function definition into name,

arguments and body"""↪

lines = [l.strip() for l in code.split('\n')]
regexp = r'def\s+([a-zA-Z_0-9]+)\(([\sa-zA-

Z0-9_,]+)\)\s*:\s*'↪

syntactic sugar, and computing every function 165

Figure 4.3: Python code for transforming NAND-CIRC-PROC programs into standard sugar-free NAND-CIRC programs.

def desugar(code, func_name, func_args,func_body):

"""

Replaces all occurences of

foo = func_name(func_args)

with

func_body[x->a,y->b]

foo = [result returned in func_body]

"""

Uses Python regular expressions to simplify the search and replace,

see https://docs.python.org/3/library/re.html and Chapter 9 of the book

regular expression for capturing a list of variable names separated by commas

arglist = ",".join([r"([a-zA-Z0-9_\[\]]+)" for i in range(len(func_args))])

regular expression for capturing a statement of the form

"variable = func_name(arguments)"

regexp = fr'([a-zA-Z0-9_\[\]]+)\s*=\s*{func_name}\({arglist}\)\s*$'

while True:

m = re.search(regexp, code, re.MULTILINE)

if not m: break

newcode = func_body

replace function arguments by the variables from the function invocation

for i in range(len(func_args)):

newcode = newcode.replace(func_args[i], m.group(i+2))

Splice the new code inside

newcode = newcode.replace('return', m.group(1) + " = ")

code = code[:m.start()] + newcode + code[m.end()+1:]

return code

166 introduction to theoretical computer science

m = re.match(regexp,lines[0])
return m.group(1), m.group(2).split(','),

'\n'.join(lines[1:])↪

4.1.3 Conditional statements
Another sorely missing feature in NAND-CIRC is a conditional
statement such as the if/then constructs that are found in many
programming languages. However, using procedures, we can ob-
tain an ersatz if/then construct. First we can compute the function
IF ∶ {0, 1}3 → {0, 1} such that IF(𝑎, 𝑏, 𝑐) equals 𝑏 if 𝑎 = 1 and 𝑐 if 𝑎 = 0.

P
Before reading onward, try to see how you could com-
pute the IF function using NAND’s. Once you do that,
see how you can use that to emulate if/then types of
constructs.

The IF function can be implemented from NANDs as follows (see
Exercise 4.2):

def IF(cond,a,b):

notcond = NAND(cond,cond)

temp = NAND(b,notcond)

temp1 = NAND(a,cond)

return NAND(temp,temp1)

The IF function is also known as a multiplexing function, since 𝑐𝑜𝑛𝑑
can be thought of as a switch that controls whether the output is con-
nected to 𝑎 or 𝑏. Once we have a procedure for computing the IF func-
tion, we can implement conditionals in NAND. The idea is that we
replace code of the form

if (condition): assign blah to variable foo

with code of the form

foo = IF(condition, blah, foo)

that assigns to foo its old value when condition equals 0, and
assign to foo the value of blah otherwise. More generally we can
replace code of the form

if (cond):

a = ...

b = ...

c = ...

syntactic sugar, and computing every function 167

with code of the form

temp_a = ...

temp_b = ...

temp_c = ...

a = IF(cond,temp_a,a)

b = IF(cond,temp_b,b)

c = IF(cond,temp_c,c)

Using such transformations, we can prove the following theorem.
Once again we omit the (not too insightful) full formal proof, though
see Section 4.1.2 for some hints on how to obtain it.

Theorem 4.6 — Conditional statements syntactic sugar. Let NAND-CIRC-
IF be the programming language NAND-CIRC augmented with
if/then/else statements for allowing code to be conditionally
executed based on whether a variable is equal to 0 or 1.

Then for every NAND-CIRC-IF program 𝑃 , there exists a stan-
dard (i.e., “sugar-free”) NAND-CIRC program 𝑃 ′ that computes
the same function as 𝑃 .

4.2 EXTENDED EXAMPLE: ADDITION AND MULTIPLICATION (OP-
TIONAL)

Using “syntactic sugar”, we can write the integer addition function as
follows:

Add two n-bit integers

Use LSB first notation for simplicity

def ADD(A,B):

Result = [0]*(n+1)

Carry = [0]*(n+1)

Carry[0] = zero(A[0])

for i in range(n):

Result[i] = XOR(Carry[i],XOR(A[i],B[i]))

Carry[i+1] = MAJ(Carry[i],A[i],B[i])

Result[n] = Carry[n]

return Result

ADD([1,1,1,0,0],[1,0,0,0,0]);;

[0, 0, 0, 1, 0, 0]

where zero is the constant zero function, and MAJ and XOR corre-
spond to the majority and XOR functions respectively. While we use
Python syntax for convenience, in this example 𝑛 is some fixed integer
and so for every such 𝑛, ADD is a finite function that takes as input 2𝑛

168 introduction to theoretical computer science

1 The value of 𝑐 can be improved to 9, see Exercise 4.5.

Figure 4.5: The number of lines in our NAND-CIRC
program to add two 𝑛 bit numbers, as a function of
𝑛, for 𝑛’s between 1 and 100. This is not the most
efficient program for this task, but the important point
is that it has the form 𝑂(𝑛).

bits and outputs 𝑛 + 1 bits. In particular for every 𝑛 we can remove
the loop construct for i in range(n) by simply repeating the code 𝑛
times, replacing the value of i with 0, 1, 2, … , 𝑛 − 1. By expanding out
all the features, for every value of 𝑛 we can translate the above pro-
gram into a standard (“sugar-free”) NAND-CIRC program. Fig. 4.4
depicts what we get for 𝑛 = 2.

Figure 4.4: The NAND-CIRC program and corre-
sponding NAND circuit for adding two-digit binary
numbers that are obtained by “expanding out” all the
syntactic sugar. The program/circuit has 43 lines/-
gates which is by no means necessary. It is possible
to add 𝑛 bit numbers using 9𝑛 NAND gates, see
Exercise 4.5.

By going through the above program carefully and accounting for
the number of gates, we can see that it yields a proof of the following
theorem (see also Fig. 4.5):

Theorem 4.7 — Addition using NAND-CIRC programs. For every 𝑛 ∈ ℕ,
let ADD𝑛 ∶ {0, 1}2𝑛 → {0, 1}𝑛+1 be the function that, given
𝑥, 𝑥′ ∈ {0, 1}𝑛 computes the representation of the sum of the num-
bers that 𝑥 and 𝑥′ represent. Then there is a constant 𝑐 ≤ 30 such
that for every 𝑛 there is a NAND-CIRC program of at most 𝑐𝑛 lines
computing ADD𝑛. 1

Once we have addition, we can use the grade-school algorithm to
obtain multiplication as well, thus obtaining the following theorem:

Theorem 4.8 — Multiplication using NAND-CIRC programs. For every 𝑛,
let MULT𝑛 ∶ {0, 1}2𝑛 → {0, 1}2𝑛 be the function that, given
𝑥, 𝑥′ ∈ {0, 1}𝑛 computes the representation of the product of the
numbers that 𝑥 and 𝑥′ represent. Then there is a constant 𝑐 such
that for every 𝑛, there is a NAND-CIRC program of at most 𝑐𝑛2

lines that computes the function MULT𝑛.

We omit the proof, though in Exercise 4.7 we ask you to supply
a “constructive proof” in the form of a program (in your favorite

syntactic sugar, and computing every function 169

programming language) that on input a number 𝑛, outputs the code
of a NAND-CIRC program of at most 1000𝑛2 lines that computes the
MULT𝑛 function. In fact, we can use Karatsuba’s algorithm to show
that there is a NAND-CIRC program of 𝑂(𝑛log2 3) lines to compute
MULT𝑛 (and can get even further asymptotic improvements using
better algorithms).

4.3 THE LOOKUP FUNCTION

The LOOKUP function will play an important role in this chapter and
later. It is defined as follows:

Definition 4.9 — Lookup function. For every 𝑘, the lookup function of
order 𝑘, LOOKUP𝑘 ∶ {0, 1}2𝑘+𝑘 → {0, 1} is defined as follows: For
every 𝑥 ∈ {0, 1}2𝑘 and 𝑖 ∈ {0, 1}𝑘,

LOOKUP𝑘(𝑥, 𝑖) = 𝑥𝑖

where 𝑥𝑖 denotes the 𝑖𝑡ℎ entry of 𝑥, using the binary representation
to identify 𝑖 with a number in {0, … , 2𝑘 − 1}.

Figure 4.6: The LOOKUP𝑘 function takes an input
in {0, 1}2𝑘+𝑘, which we denote by 𝑥, 𝑖 (with 𝑥 ∈
{0, 1}2𝑘 and 𝑖 ∈ {0, 1}𝑘). The output is 𝑥𝑖: the 𝑖-th
coordinate of 𝑥, where we identify 𝑖 as a number
in [𝑘] using the binary representation. In the above
example 𝑥 ∈ {0, 1}16 and 𝑖 ∈ {0, 1}4. Since 𝑖 = 0110
is the binary representation of the number 6, the
output of LOOKUP4(𝑥, 𝑖) in this case is 𝑥6 = 1.

See Fig. 4.6 for an illustration of the LOOKUP function. It turns
out that for every 𝑘, we can compute LOOKUP𝑘 using a NAND-CIRC
program:

Theorem 4.10 — Lookup function. For every 𝑘 > 0, there is a NAND-
CIRC program that computes the function LOOKUP𝑘 ∶ {0, 1}2𝑘+𝑘 →
{0, 1}. Moreover, the number of lines in this program is at most
4 ⋅ 2𝑘.

An immediate corollary of Theorem 4.10 is that for every 𝑘 > 0,
LOOKUP𝑘 can be computed by a Boolean circuit (with AND, OR and
NOT gates) of at most 8 ⋅ 2𝑘 gates.

4.3.1 Constructing a NAND-CIRC program for LOOKUP
We prove Theorem 4.10 by induction. For the case 𝑘 = 1, LOOKUP1
maps (𝑥0, 𝑥1, 𝑖) ∈ {0, 1}3 to 𝑥𝑖. In other words, if 𝑖 = 0 then it outputs

170 introduction to theoretical computer science

𝑥0 and otherwise it outputs 𝑥1, which (up to reordering variables) is
the same as the IF function presented in Section 4.1.3, which can be
computed by a 4-line NAND-CIRC program.

As a warm-up for the case of general 𝑘, let us consider the case
of 𝑘 = 2. Given input 𝑥 = (𝑥0, 𝑥1, 𝑥2, 𝑥3) for LOOKUP2 and an
index 𝑖 = (𝑖0, 𝑖1), if the most significant bit 𝑖0 of the index is 0 then
LOOKUP2(𝑥, 𝑖) will equal 𝑥0 if 𝑖1 = 0 and equal 𝑥1 if 𝑖1 = 1. Similarly,
if the most significant bit 𝑖0 is 1 then LOOKUP2(𝑥, 𝑖) will equal 𝑥2 if
𝑖1 = 0 and will equal 𝑥3 if 𝑖1 = 1. Another way to say this is that we
can write LOOKUP2 as follows:

def LOOKUP2(X[0],X[1],X[2],X[3],i[0],i[1]):

if i[0]==1:

return LOOKUP1(X[2],X[3],i[1])

else:

return LOOKUP1(X[0],X[1],i[1])

or in other words,

def LOOKUP2(X[0],X[1],X[2],X[3],i[0],i[1]):

a = LOOKUP1(X[2],X[3],i[1])

b = LOOKUP1(X[0],X[1],i[1])

return IF(i[0],a,b)

More generally, as shown in the following lemma, we can compute
LOOKUP𝑘 using two invocations of LOOKUP𝑘−1 and one invocation
of IF:

Lemma 4.11 — Lookup recursion. For every 𝑘 ≥ 2, LOOKUP𝑘(𝑥0, … , 𝑥2𝑘−1, 𝑖0, … , 𝑖𝑘−1)
is equal to

IF (𝑖0,LOOKUP𝑘−1(𝑥2𝑘−1 , … , 𝑥2𝑘−1, 𝑖1, … , 𝑖𝑘−1),LOOKUP𝑘−1(𝑥0, … , 𝑥2𝑘−1−1, 𝑖1, … , 𝑖𝑘−1))

Proof. If the most significant bit 𝑖0 of 𝑖 is zero, then the index 𝑖 is
in {0, … , 2𝑘−1 − 1} and hence we can perform the lookup on the
“first half” of 𝑥 and the result of LOOKUP𝑘(𝑥, 𝑖) will be the same as
𝑎 = LOOKUP𝑘−1(𝑥0, … , 𝑥2𝑘−1−1, 𝑖1, … , 𝑖𝑘−1). On the other hand, if this
most significant bit 𝑖0 is equal to 1, then the index is in {2𝑘−1, … , 2𝑘 −
1}, in which case the result of LOOKUP𝑘(𝑥, 𝑖) is the same as 𝑏 =
LOOKUP𝑘−1(𝑥2𝑘−1 , … , 𝑥2𝑘−1, 𝑖1, … , 𝑖𝑘−1). Thus we can compute
LOOKUP𝑘(𝑥, 𝑖) by first computing 𝑎 and 𝑏 and then outputting
IF(𝑖0, 𝑏, 𝑎).

■

Proof of Theorem 4.10 from Lemma 4.11. Now that we have Lemma 4.11,
we can complete the proof of Theorem 4.10. We will prove by induc-
tion on 𝑘 that there is a NAND-CIRC program of at most 4 ⋅ (2𝑘 − 1)

syntactic sugar, and computing every function 171

Figure 4.7: The number of lines in our implementation
of the LOOKUP_k function as a function of 𝑘 (i.e., the
length of the index). The number of lines in our
implementation is roughly 3 ⋅ 2𝑘.

lines for LOOKUP𝑘. For 𝑘 = 1 this follows by the four line program for
IF we’ve seen before. For 𝑘 > 1, we use the following pseudocode:

a = LOOKUP_(k-1)(X[0],...,X[2^(k-1)-1],i[1],...,i[k-1])

b = LOOKUP_(k-1)(X[2^(k-1)],...,X[2^(k-1)],i[1],...,i[k-

1])↪

return IF(i[0],b,a)

If we let 𝐿(𝑘) be the number of lines required for LOOKUP𝑘, then
the above pseudo-code shows that

𝐿(𝑘) ≤ 2𝐿(𝑘 − 1) + 4 . (4.1)

Since under our induction hypothesis 𝐿(𝑘 − 1) ≤ 4(2𝑘−1 − 1), we get
that 𝐿(𝑘) ≤ 2 ⋅ 4(2𝑘−1 − 1) + 4 = 4(2𝑘 − 1) which is what we wanted
to prove. See Fig. 4.7 for a plot of the actual number of lines in our
implementation of LOOKUP𝑘.

4.4 COMPUTING EVERY FUNCTION

At this point we know the following facts about NAND-CIRC pro-
grams (and so equivalently about Boolean circuits and our other
equivalent models):

1. They can compute at least some non-trivial functions.

2. Coming up with NAND-CIRC programs for various functions is a
very tedious task.

Thus I would not blame the reader if they were not particularly
looking forward to a long sequence of examples of functions that can
be computed by NAND-CIRC programs. However, it turns out we are
not going to need this, as we can show in one fell swoop that NAND-
CIRC programs can compute every finite function:

Theorem 4.12 — Universality of NAND. There exists some constant 𝑐 > 0
such that for every 𝑛, 𝑚 > 0 and function 𝑓 ∶ {0, 1}𝑛 → {0, 1}𝑚,
there is a NAND-CIRC program with at most 𝑐⋅𝑚2𝑛 lines that com-
putes the function 𝑓 .

By Theorem 3.19, the models of NAND circuits, NAND-CIRC pro-
grams, AON-CIRC programs, and Boolean circuits, are all equivalent
to one another, and hence Theorem 4.12 holds for all these models. In
particular, the following theorem is equivalent to Theorem 4.12:

Theorem 4.13 — Universality of Boolean circuits. There exists some
constant 𝑐 > 0 such that for every 𝑛, 𝑚 > 0 and function

172 introduction to theoretical computer science

2 In case you are curious, this is the function on input
𝑖 ∈ {0, 1}4 (which we interpret as a number in [16]),
that outputs the 𝑖-th digit of 𝜋 in the binary basis.

𝑓 ∶ {0, 1}𝑛 → {0, 1}𝑚, there is a Boolean circuit with at most
𝑐 ⋅ 𝑚2𝑛 gates that computes the function 𝑓 .

 Big Idea 5 Every finite function can be computed by a large
enough Boolean circuit.

Improved bounds. Though it will not be of great importance to us, it
is possible to improve on the proof of Theorem 4.12 and shave an extra
factor of 𝑛, as well as optimize the constant 𝑐, and so prove that for
every 𝜖 > 0, 𝑚 ∈ ℕ and sufficiently large 𝑛, if 𝑓 ∶ {0, 1}𝑛 → {0, 1}𝑚

then 𝑓 can be computed by a NAND circuit of at most (1 + 𝜖) 𝑚⋅2𝑛
𝑛

gates. The proof of this result is beyond the scope of this book, but we
do discuss how to obtain a bound of the form 𝑂(𝑚⋅2𝑛

𝑛) in Section 4.4.2;
see also the biographical notes.

4.4.1 Proof of NAND’s Universality
To prove Theorem 4.12, we need to give a NAND circuit, or equiva-
lently a NAND-CIRC program, for every possible function. We will
restrict our attention to the case of Boolean functions (i.e., 𝑚 = 1).
Exercise 4.9 asks you to extend the proof for all values of 𝑚. A func-
tion 𝐹 ∶ {0, 1}𝑛 → {0, 1} can be specified by a table of its values for
each one of the 2𝑛 inputs. For example, the table below describes one
particular function 𝐺 ∶ {0, 1}4 → {0, 1}:2

Table 4.1: An example of a function 𝐺 ∶ {0, 1}4 → {0, 1}.

Input (𝑥) Output (𝐺(𝑥))
0000 1
0001 1
0010 0
0011 0
0100 1
0101 0
0110 0
0111 1
1000 0
1001 0
1010 0
1011 0
1100 1
1101 1
1110 1
1111 1

syntactic sugar, and computing every function 173

For every 𝑥 ∈ {0, 1}4, 𝐺(𝑥) = LOOKUP4(1100100100001111, 𝑥), and
so the following is NAND-CIRC “pseudocode” to compute 𝐺 using
syntactic sugar for the LOOKUP_4 procedure.

G0000 = 1

G1000 = 1

G0100 = 0

...

G0111 = 1

G1111 = 1

Y[0] = LOOKUP_4(G0000,G1000,...,G1111,

X[0],X[1],X[2],X[3])

We can translate this pseudocode into an actual NAND-CIRC pro-
gram by adding three lines to define variables zero and one that are
initialized to 0 and 1 respectively, and then replacing a statement such
as Gxxx = 0 with Gxxx = NAND(one,one) and a statement such as
Gxxx = 1 with Gxxx = NAND(zero,zero). The call to LOOKUP_4 will
be replaced by the NAND-CIRC program that computes LOOKUP4,
plugging in the appropriate inputs.

There was nothing about the above reasoning that was particular to
the function 𝐺 above. Given every function 𝐹 ∶ {0, 1}𝑛 → {0, 1}, we
can write a NAND-CIRC program that does the following:

1. Initialize 2𝑛 variables of the form F00...0 till F11...1 so that for
every 𝑧 ∈ {0, 1}𝑛, the variable corresponding to 𝑧 is assigned the
value 𝐹(𝑧).

2. Compute LOOKUP𝑛 on the 2𝑛 variables initialized in the previ-
ous step, with the index variable being the input variables X[0
],…,X[𝑛 − 1]. That is, just like in the pseudocode for G above, we
use Y[0] = LOOKUP(F00..00,...,F11..1,X[0],..,X[𝑛 − 1])

The total number of lines in the resulting program is 3 + 2𝑛 lines for
initializing the variables plus the 4 ⋅ 2𝑛 lines that we pay for computing
LOOKUP𝑛. This completes the proof of Theorem 4.12.

R
Remark 4.14 — Result in perspective. While Theo-
rem 4.12 seems striking at first, in retrospect, it is
perhaps not that surprising that every finite function
can be computed with a NAND-CIRC program. After
all, a finite function 𝐹 ∶ {0, 1}𝑛 → {0, 1}𝑚 can be
represented by simply the list of its outputs for each
one of the 2𝑛 input values. So it makes sense that we
could write a NAND-CIRC program of similar size
to compute it. What is more interesting is that some
functions, such as addition and multiplication, have

174 introduction to theoretical computer science

3 The constant 𝑐 in this theorem is at most 10 and in
fact can be arbitrarily close to 1, see Section 4.8.

a much more efficient representation: one that only
requires 𝑂(𝑛2) or even fewer lines.

4.4.2 Improving by a factor of 𝑛 (optional)
By being a little more careful, we can improve the bound of Theo-
rem 4.12 and show that every function 𝐹 ∶ {0, 1}𝑛 → {0, 1}𝑚 can be
computed by a NAND-CIRC program of at most 𝑂(𝑚2𝑛/𝑛) lines. In
other words, we can prove the following improved version:

Theorem 4.15 — Universality of NAND circuits, improved bound. There ex-
ists a constant 𝑐 > 0 such that for every 𝑛, 𝑚 > 0 and function
𝑓 ∶ {0, 1}𝑛 → {0, 1}𝑚, there is a NAND-CIRC program with at most
𝑐 ⋅ 𝑚2𝑛/𝑛 lines that computes the function 𝑓 . 3

Proof. As before, it is enough to prove the case that 𝑚 = 1. Hence
we let 𝑓 ∶ {0, 1}𝑛 → {0, 1}, and our goal is to prove that there exists
a NAND-CIRC program of 𝑂(2𝑛/𝑛) lines (or equivalently a Boolean
circuit of 𝑂(2𝑛/𝑛) gates) that computes 𝑓 .

We let 𝑘 = log(𝑛 − 2 log𝑛) (the reasoning behind this choice will
become clear later on). We define the function 𝑔 ∶ {0, 1}𝑘 → {0, 1}2𝑛−𝑘

as follows:

𝑔(𝑎) = 𝑓(𝑎0𝑛−𝑘)𝑓(𝑎0𝑛−𝑘−11) ⋯ 𝑓(𝑎1𝑛−𝑘) .

In other words, if we use the usual binary representation to identify
the numbers {0, … , 2𝑛−𝑘 − 1} with the strings {0, 1}𝑛−𝑘, then for every
𝑎 ∈ {0, 1}𝑘 and 𝑏 ∈ {0, 1}𝑛−𝑘

𝑔(𝑎)𝑏 = 𝑓(𝑎𝑏) . (4.2)

Figure 4.8: We can compute 𝑓 ∶ {0, 1}𝑛 → {0, 1} on
input 𝑥 = 𝑎𝑏 where 𝑎 ∈ {0, 1}𝑘 and 𝑏 ∈ {0, 1}𝑛−𝑘

by first computing the 2𝑛−𝑘 long string 𝑔(𝑎) that
corresponds to all 𝑓’s values on inputs that begin with
𝑎, and then outputting the 𝑏-th coordinate of this
string.

(4.2) means that for every 𝑥 ∈ {0, 1}𝑛, if we write 𝑥 = 𝑎𝑏 with
𝑎 ∈ {0, 1}𝑘 and 𝑏 ∈ {0, 1}𝑛−𝑘 then we can compute 𝑓(𝑥) by first

syntactic sugar, and computing every function 175

Figure 4.9: If 𝑔0, … , 𝑔𝑁−1 is a collection of functions
each mapping {0, 1}𝑘 to {0, 1} such that at most 𝑆
of them are distinct then for every 𝑎 ∈ {0, 1}𝑘, we
can compute all the values 𝑔0(𝑎), … , 𝑔𝑁−1(𝑎) using
at most 𝑂(𝑆 ⋅ 2𝑘 + 𝑁) operations by first computing
the distinct functions and then copying the resulting
values.

computing the string 𝑇 = 𝑔(𝑎) of length 2𝑛−𝑘, and then computing
LOOKUP𝑛−𝑘(𝑇 , 𝑏) to retrieve the element of 𝑇 at the position cor-
responding to 𝑏 (see Fig. 4.8). The cost to compute the LOOKUP𝑛−𝑘
is 𝑂(2𝑛−𝑘) lines/gates and the cost in NAND-CIRC lines (or Boolean
gates) to compute 𝑓 is at most

𝑐𝑜𝑠𝑡(𝑔) + 𝑂(2𝑛−𝑘) , (4.3)

where 𝑐𝑜𝑠𝑡(𝑔) is the number of operations (i.e., lines of NAND-CIRC
programs or gates in a circuit) needed to compute 𝑔.

To complete the proof we need to give a bound on 𝑐𝑜𝑠𝑡(𝑔). Since 𝑔
is a function mapping {0, 1}𝑘 to {0, 1}2𝑛−𝑘 , we can also think of it as a
collection of 2𝑛−𝑘 functions 𝑔0, … , 𝑔2𝑛−𝑘−1 ∶ {0, 1}𝑘 → {0, 1}, where
𝑔𝑖(𝑥) = 𝑔(𝑎)𝑖 for every 𝑎 ∈ {0, 1}𝑘 and 𝑖 ∈ [2𝑛−𝑘]. (That is, 𝑔𝑖(𝑎) is
the 𝑖-th bit of 𝑔(𝑎).) Naively, we could use Theorem 4.12 to compute
each 𝑔𝑖 in 𝑂(2𝑘) lines, but then the total cost is 𝑂(2𝑛−𝑘 ⋅ 2𝑘) = 𝑂(2𝑛)
which does not save us anything. However, the crucial observation
is that there are only 22𝑘 distinct functions mapping {0, 1}𝑘 to {0, 1}.
For example, if 𝑔17 is an identical function to 𝑔67 that means that if
we already computed 𝑔17(𝑎) then we can compute 𝑔67(𝑎) using only
a constant number of operations: simply copy the same value! In
general, if you have a collection of 𝑁 functions 𝑔0, … , 𝑔𝑁−1 mapping
{0, 1}𝑘 to {0, 1}, of which at most 𝑆 are distinct then for every value
𝑎 ∈ {0, 1}𝑘 we can compute the 𝑁 values 𝑔0(𝑎), … , 𝑔𝑁−1(𝑎) using at
most 𝑂(𝑆 ⋅ 2𝑘 + 𝑁) operations (see Fig. 4.9).

In our case, because there are at most 22𝑘 distinct functions map-
ping {0, 1}𝑘 to {0, 1}, we can compute the function 𝑔 (and hence by
(4.2) also 𝑓) using at most

𝑂(22𝑘 ⋅ 2𝑘 + 2𝑛−𝑘) (4.4)

operations. Now all that is left is to plug into (4.4) our choice of 𝑘 =
log(𝑛 − 2 log𝑛). By definition, 2𝑘 = 𝑛 − 2 log𝑛, which means that (4.4)
can be bounded

𝑂 (2𝑛−2 log𝑛 ⋅ (𝑛 − 2 log𝑛) + 2𝑛−log(𝑛−2 log𝑛)) ≤

𝑂 (2𝑛
𝑛2 ⋅ 𝑛 + 2𝑛

𝑛−2 log𝑛) ≤ 𝑂 (2𝑛
𝑛 + 2𝑛

0.5𝑛) = 𝑂 (2𝑛
𝑛)

which is what we wanted to prove. (We used above the fact that 𝑛 −
2 log𝑛 ≥ 0.5 log𝑛 for sufficiently large 𝑛.)

■

Using the connection between NAND-CIRC programs and Boolean
circuits, an immediate corollary of Theorem 4.15 is the following
improvement to Theorem 4.13:

176 introduction to theoretical computer science

Figure 4.10: Given a function 𝑓 ∶ {0, 1}𝑛 → {0, 1},
we let {𝑥0, 𝑥1, … , 𝑥𝑁−1} ⊆ {0, 1}𝑛 be the set of
inputs such that 𝑓(𝑥𝑖) = 1, and note that 𝑁 ≤ 2𝑛.
We can express 𝑓 as the OR of 𝛿𝑥𝑖 for 𝑖 ∈ [𝑁] where
the function 𝛿𝛼 ∶ {0, 1}𝑛 → {0, 1} (for 𝛼 ∈ {0, 1}𝑛)
is defined as follows: 𝛿𝛼(𝑥) = 1 iff 𝑥 = 𝛼. We can
compute the OR of 𝑁 values using 𝑁 two-input OR
gates. Therefore if we have a circuit of size 𝑂(𝑛) to
compute 𝛿𝛼 for every 𝛼 ∈ {0, 1}𝑛, we can compute 𝑓
using a circuit of size 𝑂(𝑛 ⋅ 𝑁) = 𝑂(𝑛 ⋅ 2𝑛).

Theorem 4.16 — Universality of Boolean circuits, improved bound. There
exists some constant 𝑐 > 0 such that for every 𝑛, 𝑚 > 0 and func-
tion 𝑓 ∶ {0, 1}𝑛 → {0, 1}𝑚, there is a Boolean circuit with at most
𝑐 ⋅ 𝑚2𝑛/𝑛 gates that computes the function 𝑓 .

4.5 COMPUTING EVERY FUNCTION: AN ALTERNATIVE PROOF

Theorem 4.13 is a fundamental result in the theory (and practice!) of
computation. In this section, we present an alternative proof of this
basic fact that Boolean circuits can compute every finite function. This
alternative proof gives a somewhat worse quantitative bound on the
number of gates but it has the advantage of being simpler, working
directly with circuits and avoiding the usage of all the syntactic sugar
machinery. (However, that machinery is useful in its own right, and
will find other applications later on.)

Theorem 4.17 — Universality of Boolean circuits (alternative phrasing). There
exists some constant 𝑐 > 0 such that for every 𝑛, 𝑚 > 0 and func-
tion 𝑓 ∶ {0, 1}𝑛 → {0, 1}𝑚, there is a Boolean circuit with at most
𝑐 ⋅ 𝑚 ⋅ 𝑛2𝑛 gates that computes the function 𝑓 .

Proof Idea:

The idea of the proof is illustrated in Fig. 4.10. As before, it is
enough to focus on the case that 𝑚 = 1 (the function 𝑓 has a sin-
gle output), since we can always extend this to the case of 𝑚 > 1
by looking at the composition of 𝑚 circuits each computing a differ-
ent output bit of the function 𝑓 . We start by showing that for every
𝛼 ∈ {0, 1}𝑛, there is an 𝑂(𝑛)-sized circuit that computes the function
𝛿𝛼 ∶ {0, 1}𝑛 → {0, 1} defined as follows: 𝛿𝛼(𝑥) = 1 iff 𝑥 = 𝛼 (that is,
𝛿𝛼 outputs 0 on all inputs except the input 𝛼). We can then write any
function 𝑓 ∶ {0, 1}𝑛 → {0, 1} as the OR of at most 2𝑛 functions 𝛿𝛼 for
the 𝛼’s on which 𝑓(𝛼) = 1.

⋆

Proof of Theorem 4.17. We prove the theorem for the case 𝑚 = 1. The
result can be extended for 𝑚 > 1 as before (see also Exercise 4.9). Let
𝑓 ∶ {0, 1}𝑛 → {0, 1}. We will prove that there is an 𝑂(𝑛 ⋅ 2𝑛)-sized
Boolean circuit to compute 𝑓 in the following steps:

1. We show that for every 𝛼 ∈ {0, 1}𝑛, there is an 𝑂(𝑛)-sized circuit
that computes the function 𝛿𝛼 ∶ {0, 1}𝑛 → {0, 1}, where 𝛿𝛼(𝑥) = 1 iff
𝑥 = 𝛼.

2. We then show that this implies the existence of an 𝑂(𝑛 ⋅ 2𝑛)-sized
circuit that computes 𝑓 , by writing 𝑓(𝑥) as the OR of 𝛿𝛼(𝑥) for all

syntactic sugar, and computing every function 177

Figure 4.11: For every string 𝛼 ∈ {0, 1}𝑛, there is a
Boolean circuit of 𝑂(𝑛) gates to compute the function
𝛿𝛼 ∶ {0, 1}𝑛 → {0, 1} such that 𝛿𝛼(𝑥) = 1 if and
only if 𝑥 = 𝛼. The circuit is very simple. Given input
𝑥0, … , 𝑥𝑛−1 we compute the AND of 𝑧0, … , 𝑧𝑛−1
where 𝑧𝑖 = 𝑥𝑖 if 𝛼𝑖 = 1 and 𝑧𝑖 = NOT(𝑥𝑖) if 𝛼𝑖 = 0.
While formally Boolean circuits only have a gate for
computing the AND of two inputs, we can implement
an AND of 𝑛 inputs by composing 𝑛 two-input
ANDs.

𝛼 ∈ {0, 1}𝑛 such that 𝑓(𝛼) = 1. (If 𝑓 is the constant zero function
and hence there is no such 𝛼, then we can use the circuit 𝑓(𝑥) =
𝑥0 ∧ 𝑥0.)

We start with Step 1:
CLAIM: For 𝛼 ∈ {0, 1}𝑛, define 𝛿𝛼 ∶ {0, 1}𝑛 as follows:

𝛿𝛼(𝑥) =
⎧{
⎨{⎩

1 𝑥 = 𝛼
0 otherwise

.

then there is a Boolean circuit using at most 2𝑛 gates that computes 𝛿𝛼.
PROOF OF CLAIM: The proof is illustrated in Fig. 4.11. As an

example, consider the function 𝛿011 ∶ {0, 1}3 → {0, 1}. This function
outputs 1 on 𝑥 if and only if 𝑥0 = 0, 𝑥1 = 1 and 𝑥2 = 1, and so we can
write 𝛿011(𝑥) = 𝑥0 ∧ 𝑥1 ∧ 𝑥2, which translates into a Boolean circuit
with one NOT gate and two AND gates. More generally, for every
𝛼 ∈ {0, 1}𝑛, we can express 𝛿𝛼(𝑥) as (𝑥0 = 𝛼0)∧(𝑥1 = 𝛼1)∧⋯∧(𝑥𝑛−1 =
𝛼𝑛−1), where if 𝛼𝑖 = 0 we replace 𝑥𝑖 = 𝛼𝑖 with 𝑥𝑖 and if 𝛼𝑖 = 1 we
replace 𝑥𝑖 = 𝛼𝑖 by simply 𝑥𝑖. This yields a circuit that computes 𝛿𝛼
using 𝑛 AND gates and at most 𝑛 NOT gates, so a total of at most 2𝑛
gates.

Now for every function 𝑓 ∶ {0, 1}𝑛 → {0, 1}, we can write

𝑓(𝑥) = 𝛿𝑥0
(𝑥) ∨ 𝛿𝑥1

(𝑥) ∨ ⋯ ∨ 𝛿𝑥𝑁−1
(𝑥) (4.5)

where 𝑆 = {𝑥0, … , 𝑥𝑁−1} is the set of inputs on which 𝑓 outputs 1.
(To see this, you can verify that the right-hand side of (4.5) evaluates
to 1 on 𝑥 ∈ {0, 1}𝑛 if and only if 𝑥 is in the set 𝑆.)

Therefore we can compute 𝑓 using a Boolean circuit of at most 2𝑛
gates for each of the 𝑁 functions 𝛿𝑥𝑖

and combine that with at most 𝑁
OR gates, thus obtaining a circuit of at most 2𝑛 ⋅ 𝑁 + 𝑁 gates. Since
𝑆 ⊆ {0, 1}𝑛, its size 𝑁 is at most 2𝑛 and hence the total number of
gates in this circuit is 𝑂(𝑛 ⋅ 2𝑛).

■

4.6 THE CLASS SIZE𝑛,𝑚(𝑠)
We have seen that every function 𝑓 ∶ {0, 1}𝑛 → {0, 1}𝑚 can be com-
puted by a circuit of size 𝑂(𝑚 ⋅ 2𝑛), and some functions (such as ad-
dition and multiplication) can be computed by much smaller circuits.
We define SIZE𝑛,𝑚(𝑠) to be the set of functions mapping 𝑛 bits to 𝑚
bits that can be computed by NAND circuits of at most 𝑠 gates (or
equivalently, by NAND-CIRC programs of at most 𝑠 lines). Formally,
the definition is as follows:

178 introduction to theoretical computer science

Definition 4.18 — Size class of functions. For all natural numbers 𝑛, 𝑚, 𝑠,
let SIZE𝑛,𝑚(𝑠) denote the set of all functions 𝑓 ∶ {0, 1}𝑛 → {0, 1}𝑚

such that there exists a NAND circuit of at most 𝑠 gates comput-
ing 𝑓 . We denote by SIZE𝑛(𝑠) the set SIZE𝑛,1(𝑠). For every integer
𝑠 ≥ 1, we let SIZE(𝑠) = ∪𝑛,𝑚SIZE𝑛,𝑚(𝑠) be the set of all functions
𝑓 for which there exists a NAND circuit of at most 𝑠 gates that
compute 𝑓 .

Fig. 4.12 depicts the set SIZE𝑛,1(𝑠). Note that SIZE𝑛,𝑚(𝑠) is a set of
functions, not of programs! Asking if a program or a circuit is a mem-
ber of SIZE𝑛,𝑚(𝑠) is a category error as in the sense of Fig. 4.13. As we
discussed in Section 3.7.2 (and Section 2.6.1), the distinction between
programs and functions is absolutely crucial. You should always re-
member that while a program computes a function, it is not equal to
a function. In particular, as we’ve seen, there can be more than one
program to compute the same function.

Figure 4.12: There are 22𝑛 functions mapping {0, 1}𝑛

to {0, 1}, and an infinite number of circuits with 𝑛 bit
inputs and a single bit of output. Every circuit com-
putes one function, but every function can be com-
puted by many circuits. We say that 𝑓 ∈ SIZE𝑛,1(𝑠)
if the smallest circuit that computes 𝑓 has 𝑠 or fewer
gates. For example XOR𝑛 ∈ SIZE𝑛,1(4𝑛). Theo-
rem 4.12 shows that every function 𝑔 is computable
by some circuit of at most 𝑐 ⋅ 2𝑛/𝑛 gates, and hence
SIZE𝑛,1(𝑐 ⋅ 2𝑛/𝑛) corresponds to the set of all func-
tions from {0, 1}𝑛 to {0, 1}.

While we defined SIZE𝑛(𝑠) with respect to NAND gates, we
would get essentially the same class if we defined it with respect to
AND/OR/NOT gates:

Lemma 4.19 Let SIZE𝐴𝑂𝑁
𝑛,𝑚 (𝑠) denote the set of all functions 𝑓 ∶ {0, 1}𝑛 →

{0, 1}𝑚 that can be computed by an AND/OR/NOT Boolean circuit of
at most 𝑠 gates. Then,

SIZE𝑛,𝑚(𝑠/2) ⊆ SIZE𝐴𝑂𝑁
𝑛,𝑚 (𝑠) ⊆ SIZE𝑛,𝑚(3𝑠)

Proof. If 𝑓 can be computed by a NAND circuit of at most 𝑠/2 gates,
then by replacing each NAND with the two gates NOT and AND, we
can obtain an AND/OR/NOT Boolean circuit of at most 𝑠 gates that

syntactic sugar, and computing every function 179

Figure 4.13: A “category error” is a question such as
“is a cucumber even or odd?” which does not even
make sense. In this book one type of category error
you should watch out for is confusing functions and
programs (i.e., confusing specifications and implemen-
tations). If 𝐶 is a circuit or program, then asking if
𝐶 ∈ SIZE𝑛,1(𝑠) is a category error, since SIZE𝑛,1(𝑠) is
a set of functions and not programs or circuits.

computes 𝑓 . On the other hand, if 𝑓 can be computed by a Boolean
AND/OR/NOT circuit of at most 𝑠 gates, then by Theorem 3.12 it can
be computed by a NAND circuit of at most 3𝑠 gates.

■

The results we have seen in this chapter can be phrased as showing
that ADD𝑛 ∈ SIZE2𝑛,𝑛+1(100𝑛) and MULT𝑛 ∈ SIZE2𝑛,2𝑛(10000𝑛log2 3).
Theorem 4.12 shows that for some constant 𝑐, SIZE𝑛,𝑚(𝑐𝑚2𝑛) is equal
to the set of all functions from {0, 1}𝑛 to {0, 1}𝑚.

R
Remark 4.20 — Finite vs infinite functions. Unlike pro-
gramming languages such as Python, C or JavaScript,
the NAND-CIRC and AON-CIRC programming lan-
guage do not have arrays. A NAND-CIRC program
𝑃 has some fixed number 𝑛 and 𝑚 of inputs and out-
put variable. Hence, for example, there is no single
NAND-CIRC program that can compute the incre-
ment function INC ∶ {0, 1}∗ → {0, 1}∗ that maps a
string 𝑥 (which we identify with a number via the
binary representation) to the string that represents
𝑥 + 1. Rather for every 𝑛 > 0, there is a NAND-CIRC
program 𝑃𝑛 that computes the restriction INC𝑛 of
the function INC to inputs of length 𝑛. Since it can be
shown that for every 𝑛 > 0 such a program 𝑃𝑛 exists
of length at most 10𝑛, INC𝑛 ∈ SIZE𝑛,𝑛+1(10𝑛) for
every 𝑛 > 0.
For the time being, our focus will be on finite func-
tions, but we will discuss how to extend the definition
of size complexity to functions with unbounded input
lengths later on in Section 13.6.

Solved Exercise 4.1 — 𝑆𝐼𝑍𝐸 closed under complement.. In this exercise we
prove a certain “closure property” of the class SIZE𝑛(𝑠). That is, we
show that if 𝑓 is in this class then (up to some small additive term) so
is the complement of 𝑓 , which is the function 𝑔(𝑥) = 1 − 𝑓(𝑥).

Prove that there is a constant 𝑐 such that for every 𝑓 ∶ {0, 1}𝑛 →
{0, 1} and 𝑠 ∈ ℕ, if 𝑓 ∈ SIZE𝑛(𝑠) then 1 − 𝑓 ∈ SIZE𝑛(𝑠 + 𝑐).

■

Solution:

If 𝑓 ∈ SIZE𝑛(𝑠) then there is an 𝑠-line NAND-CIRC program
𝑃 that computes 𝑓 . We can rename the variable Y[0] in 𝑃 to a
variable temp and add the line

Y[0] = NAND(temp,temp)

at the very end to obtain a program 𝑃 ′ that computes 1 − 𝑓 .

180 introduction to theoretical computer science

■

✓ Chapter Recap

• We can define the notion of computing a function
via a simplified “programming language”, where
computing a function 𝐹 in 𝑇 steps would corre-
spond to having a 𝑇 -line NAND-CIRC program
that computes 𝐹 .

• While the NAND-CIRC programming only has one
operation, other operations such as functions and
conditional execution can be implemented using it.

• Every function 𝑓 ∶ {0, 1}𝑛 → {0, 1}𝑚 can be com-
puted by a circuit of at most 𝑂(𝑚2𝑛) gates (and in
fact at most 𝑂(𝑚2𝑛/𝑛) gates).

• Sometimes (or maybe always?) we can translate an
efficient algorithm to compute 𝑓 into a circuit that
computes 𝑓 with a number of gates comparable to
the number of steps in this algorithm.

4.7 EXERCISES

Exercise 4.1 — Pairing. This exercise asks you to give a one-to-one map
from ℕ2 to ℕ. This can be useful to implement two-dimensional arrays
as “syntactic sugar” in programming languages that only have one-
dimensional arrays.

1. Prove that the map 𝐹(𝑥, 𝑦) = 2𝑥3𝑦 is a one-to-one map from ℕ2 to
ℕ.

2. Show that there is a one-to-one map 𝐹 ∶ ℕ2 → ℕ such that for every
𝑥, 𝑦, 𝐹(𝑥, 𝑦) ≤ 100 ⋅ max{𝑥, 𝑦}2 + 100.

3. For every 𝑘, show that there is a one-to-one map 𝐹 ∶ ℕ𝑘 → ℕ such
that for every 𝑥0, … , 𝑥𝑘−1 ∈ ℕ, 𝐹(𝑥0, … , 𝑥𝑘−1) ≤ 100 ⋅ (𝑥0 + 𝑥1 + … +
𝑥𝑘−1 + 100𝑘)𝑘.

■

Exercise 4.2 — Computing MUX. Prove that the NAND-CIRC program be-
low computes the function MUX (or LOOKUP1) where MUX(𝑎, 𝑏, 𝑐)
equals 𝑎 if 𝑐 = 0 and equals 𝑏 if 𝑐 = 1:

t = NAND(X[2],X[2])

u = NAND(X[0],t)

v = NAND(X[1],X[2])

Y[0] = NAND(u,v)

■

syntactic sugar, and computing every function 181

4 You can start by transforming 𝑃 into a NAND-CIRC-
PROC program that uses procedure statements, and
then use the code of Fig. 4.3 to transform the latter
into a “sugar-free” NAND-CIRC program.

5 Use a “cascade” of adding the bits one after the
other, starting with the least significant digit, just like
in the elementary-school algorithm.

Exercise 4.3 — At least two / Majority. Give a NAND-CIRC program of at
most 6 lines to compute the function MAJ ∶ {0, 1}3 → {0, 1} where
MAJ(𝑎, 𝑏, 𝑐) = 1 iff 𝑎 + 𝑏 + 𝑐 ≥ 2.

■

Exercise 4.4 — Conditional statements. In this exercise we will explore The-
orem 4.6: transforming NAND-CIRC-IF programs that use code such
as if .. then .. else .. to standard NAND-CIRC programs.

1. Give a “proof by code” of Theorem 4.6: a program in a program-
ming language of your choice that transforms a NAND-CIRC-IF
program 𝑃 into a “sugar-free” NAND-CIRC program 𝑃 ′ that com-
putes the same function. See footnote for hint.4

2. Prove the following statement, which is the heart of Theorem 4.6:
suppose that there exists an 𝑠-line NAND-CIRC program to com-
pute 𝑓 ∶ {0, 1}𝑛 → {0, 1} and an 𝑠′-line NAND-CIRC program
to compute 𝑔 ∶ {0, 1}𝑛 → {0, 1}. Prove that there exist a NAND-
CIRC program of at most 𝑠 + 𝑠′ + 10 lines to compute the func-
tion ℎ ∶ {0, 1}𝑛+1 → {0, 1} where ℎ(𝑥0, … , 𝑥𝑛−1, 𝑥𝑛) equals
𝑓(𝑥0, … , 𝑥𝑛−1) if 𝑥𝑛 = 0 and equals 𝑔(𝑥0, … , 𝑥𝑛−1) otherwise.
(All programs in this item are standard “sugar-free” NAND-CIRC
programs.)

■

Exercise 4.5 — Half and full adders. 1. A half adder is the function HA ∶
{0, 1}2 ∶→ {0, 1}2 that corresponds to adding two binary bits. That
is, for every 𝑎, 𝑏 ∈ {0, 1}, HA(𝑎, 𝑏) = (𝑒, 𝑓) where 2𝑒 + 𝑓 = 𝑎 + 𝑏.
Prove that there is a NAND circuit of at most five NAND gates that
computes HA.

2. A full adder is the function FA ∶ {0, 1}3 → {0, 1}2 that takes in
two bits and a “carry” bit and outputs their sum. That is, for every
𝑎, 𝑏, 𝑐 ∈ {0, 1}, FA(𝑎, 𝑏, 𝑐) = (𝑒, 𝑓) such that 2𝑒 + 𝑓 = 𝑎 + 𝑏 + 𝑐.
Prove that there is a NAND circuit of at most nine NAND gates that
computes FA.

3. Prove that if there is a NAND circuit of 𝑐 gates that computes FA,
then there is a circuit of 𝑐𝑛 gates that computes ADD𝑛 where (as
in Theorem 4.7) ADD𝑛 ∶ {0, 1}2𝑛 → {0, 1}𝑛+1 is the function that
outputs the addition of two input 𝑛-bit numbers. See footnote for
hint.5

4. Show that for every 𝑛 there is a NAND-CIRC program to compute
ADD𝑛 with at most 9𝑛 lines.

■

182 introduction to theoretical computer science

6 Hint: Use Karatsuba’s algorithm.

Exercise 4.6 — Addition. Write a program using your favorite program-
ming language that on input of an integer 𝑛, outputs a NAND-CIRC
program that computes ADD𝑛. Can you ensure that the program it
outputs for ADD𝑛 has fewer than 10𝑛 lines?

■

Exercise 4.7 — Multiplication. Write a program using your favorite pro-
gramming language that on input of an integer 𝑛, outputs a NAND-
CIRC program that computes MULT𝑛. Can you ensure that the pro-
gram it outputs for MULT𝑛 has fewer than 1000 ⋅ 𝑛2 lines?

■

Exercise 4.8 — Efficient multiplication (challenge). Write a program using
your favorite programming language that on input of an integer 𝑛,
outputs a NAND-CIRC program that computes MULT𝑛 and has at
most 10000𝑛1.9 lines.6 What is the smallest number of lines you can
use to multiply two 2048 bit numbers?

■

Exercise 4.9 — Multibit function. In the text Theorem 4.12 is only proven
for the case 𝑚 = 1. In this exercise you will extend the proof for every
𝑚.

Prove that

1. If there is an 𝑠-line NAND-CIRC program to compute
𝑓 ∶ {0, 1}𝑛 → {0, 1} and an 𝑠′-line NAND-CIRC program
to compute 𝑓 ′ ∶ {0, 1}𝑛 → {0, 1} then there is an 𝑠 + 𝑠′-line
program to compute the function 𝑔 ∶ {0, 1}𝑛 → {0, 1}2 such that
𝑔(𝑥) = (𝑓(𝑥), 𝑓 ′(𝑥)).

2. For every function 𝑓 ∶ {0, 1}𝑛 → {0, 1}𝑚, there is a NAND-CIRC
program of at most 10𝑚 ⋅ 2𝑛 lines that computes 𝑓 . (You can use the
𝑚 = 1 case of Theorem 4.12, as well as Item 1.)

■

Exercise 4.10 — Simplifying using syntactic sugar. Let 𝑃 be the following
NAND-CIRC program:

Temp[0] = NAND(X[0],X[0])

Temp[1] = NAND(X[1],X[1])

Temp[2] = NAND(Temp[0],Temp[1])

Temp[3] = NAND(X[2],X[2])

Temp[4] = NAND(X[3],X[3])

Temp[5] = NAND(Temp[3],Temp[4])

Temp[6] = NAND(Temp[2],Temp[2])

Temp[7] = NAND(Temp[5],Temp[5])

Y[0] = NAND(Temp[6],Temp[7])

syntactic sugar, and computing every function 183

1. Write a program 𝑃 ′ with at most three lines of code that uses both
NAND as well as the syntactic sugar OR that computes the same func-
tion as 𝑃 .

2. Draw a circuit that computes the same function as 𝑃 and uses only
AND and NOT gates.

■

In the following exercises you are asked to compare the power of
pairs of programming languages. By “comparing the power” of two
programming languages 𝑋 and 𝑌 we mean determining the relation
between the set of functions that are computable using programs in 𝑋
and 𝑌 respectively. That is, to answer such a question you need to do
both of the following:

1. Either prove that for every program 𝑃 in 𝑋 there is a program 𝑃 ′

in 𝑌 that computes the same function as 𝑃 , or give an example for
a function that is computable by an 𝑋-program but not computable
by a 𝑌 -program.

and

2. Either prove that for every program 𝑃 in 𝑌 there is a program 𝑃 ′

in 𝑋 that computes the same function as 𝑃 , or give an example for a
function that is computable by a 𝑌 -program but not computable by
an 𝑋-program.

When you give an example as above of a function that is com-
putable in one programming language but not the other, you need
to prove that the function you showed is (1) computable in the first
programming language and (2) not computable in the second program-
ming language.

Exercise 4.11 — Compare IF and NAND. Let IF-CIRC be the programming
language where we have the following operations foo = 0, foo = 1,
foo = IF(cond,yes,no) (that is, we can use the constants 0 and 1,
and the IF ∶ {0, 1}3 → {0, 1} function such that IF(𝑎, 𝑏, 𝑐) equals 𝑏 if
𝑎 = 1 and equals 𝑐 if 𝑎 = 0). Compare the power of the NAND-CIRC
programming language and the IF-CIRC programming language.

■

Exercise 4.12 — Compare XOR and NAND. Let XOR-CIRC be the pro-
gramming language where we have the following operations foo
= XOR(bar,blah), foo = 1 and bar = 0 (that is, we can use the
constants 0, 1 and the XOR function that maps 𝑎, 𝑏 ∈ {0, 1}2 to 𝑎 + 𝑏
mod 2). Compare the power of the NAND-CIRC programming
language and the XOR-CIRC programming language. See footnote for
hint.7

184 introduction to theoretical computer science

8 One approach to solve this is using recursion and the
so-called Master Theorem.

■

Exercise 4.13 — Circuits for majority. Prove that there is some constant 𝑐
such that for every 𝑛 > 1, MAJ𝑛 ∈ SIZE𝑛(𝑐𝑛) where MAJ𝑛 ∶ {0, 1}𝑛 →
{0, 1} is the majority function on 𝑛 input bits. That is MAJ𝑛(𝑥) = 1 iff
∑𝑛−1

𝑖=0 𝑥𝑖 > 𝑛/2. See footnote for hint.8
■

Exercise 4.14 — Circuits for threshold. Prove that there is some constant 𝑐
such that for every 𝑛 > 1, and integers 𝑎0, … , 𝑎𝑛−1, 𝑏 ∈ {−2𝑛, −2𝑛 +
1, … , −1, 0, +1, … , 2𝑛}, there is a NAND circuit with at most 𝑛𝑐 gates
that computes the threshold function 𝑓𝑎0,…,𝑎𝑛−1,𝑏 ∶ {0, 1}𝑛 → {0, 1} that
on input 𝑥 ∈ {0, 1}𝑛 outputs 1 if and only if ∑𝑛−1

𝑖=0 𝑎𝑖𝑥𝑖 > 𝑏.
■

4.8 BIBLIOGRAPHICAL NOTES

See Jukna’s and Wegener’s books [Juk12; Weg87] for much more
extensive discussion on circuits. Shannon showed that every Boolean
function can be computed by a circuit of exponential size [Sha38]. The
improved bound of 𝑐 ⋅ 2𝑛/𝑛 (with the optimal value of 𝑐 for many
bases) is due to Lupanov [Lup58]. An exposition of this for the case
of NAND (where 𝑐 = 1) is given in Chapter 4 of his book [Lup84].
(Thanks to Sasha Golovnev for tracking down this reference!)

The concept of “syntactic sugar” is also known as “macros” or
“meta-programming” and is sometimes implemented via a prepro-
cessor or macro language in a programming language or a text editor.
One modern example is the Babel JavaScript syntax transformer, that
converts JavaScript programs written using the latest features into
a format that older Browsers can accept. It even has a plug-in ar-
chitecture, that allows users to add their own syntactic sugar to the
language.

https://en.wikipedia.org/wiki/Master%5Ftheorem%5F(analysis%5Fof%5Falgorithms)
https://babeljs.io/
https://babeljs.io/docs/plugins/

