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Quantum computing and cryptography I

“I think I can safely say that nobody understands quan-
tum mechanics.” , Richard Feynman, 1965

“The only difference between a probabilistic classical
world and the equations of the quantum world is that
somehow or other it appears as if the probabilities would
have to go negative”, Richard Feynman, 1982

There were two schools of natural philosophy in ancient Greece.
Aristotle believed that objects have an essence that explains their behav-
ior, and a theory of the natural world has to refer to the reasons (or “fi-
nal cause” to use Aristotle’s language) as to why they exhibit certain
phenomena. Democritus believed in a purely mechanistic explanation
of the world. In his view, the universe was ultimately composed of
elementary particles (or Atoms) and our observed phenomena arise
from the interactions between these particles according to some local
rules. Modern science (arguably starting with Newton) has embraced
Democritus’ point of view, of a mechanistic or “clockwork” universe
of particles and forces acting upon them.

While the classification of particles and forces evolved with time,
to a large extent the “big picture” has not changed from Newton till
Einstein. In particular it was held as an axiom that if we knew fully
the current state of the universe (i.e., the particles and their properties
such as location and velocity) then we could predict its future state at
any point in time. In computational language, in all these theories the
state of a system with 𝑛 particles could be stored in an array of 𝑂(𝑛)
numbers, and predicting the evolution of the system can be done by
running some efficient (e.g., 𝑝𝑜𝑙𝑦(𝑛) time) deterministic computation
on this array.
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Figure 18.1: In the “double baseball experiment” we
shoot baseballs from a gun at a soft wall through a
hard barrier that has one or two slits open in it. There
is only “constructive interference” in the sense that
the dent in each position in the wall when both slits
are open is the sum of the dents when each slit is
open on its own.
1 A nice illustrated description of the double slit
experiment appears in this video.

Figure 18.2: The setup of the double slit experiment
in the case of photon or electron guns. We see also
destructive interference in the sense that there are
some positions on the wall that get fewer hits when
both slits are open than they get when only one of the
slits is open. Image credit: Wikipedia.

18.1 THE DOUBLE SLIT EXPERIMENT

Alas, in the beginning of the 20th century, several experimental re-
sults were calling into question this “clockwork” or “billiard ball”
theory of the world. One such experiment is the famous double slit ex-
periment. Here is one way to describe it. Suppose that we buy one of
those baseball pitching machines, and aim it at a soft plastic wall, but
put a metal barrier with a single slit between the machine and the plastic
wall (see Fig. 18.1). If we shoot baseballs at the plastic wall, then some
of the baseballs would bounce off the metal barrier, while some would
make it through the slit and dent the wall. If we now carve out an ad-
ditional slit in the metal barrier then more balls would get through,
and so the plastic wall would be even more dented.

So far this is pure common sense, and it is indeed (to my knowl-
edge) an accurate description of what happens when we shoot base-
balls at a plastic wall. However, this is not the same when we shoot
photons. Amazingly, if we shoot with a “photon gun” (i.e., a laser) at
a wall equipped with photon detectors through some barrier, then
(as shown in Fig. 18.2) in some positions of the wall we will see fewer
hits when the two slits are open than one only ones of them is!.1 In
particular there are positions in the wall that are hit when the first slit
is open, hit when the second gun is open, but are not hit at all when both
slits are open!.

It seems as if each photon coming out of the gun is aware of the
global setup of the experiment, and behaves differently if two slits are
open than if only one is. If we try to “catch the photon in the act” and
place a detector right next to each slit so we can see exactly the path
each photon takes then something even more bizarre happens. The
mere fact that we measure the path changes the photon’s behavior, and
now this “destructive interference” pattern is gone and the number
of times a position is hit when two slits are open is the sum of the
number of times it is hit when each slit is open.

P
You should read the paragraphs above more than
once and make sure you appreciate how truly mind
boggling these results are.

18.2 QUANTUM AMPLITUDES

The double slit and other experiments ultimately forced scientists to
accept a very counterintuitive picture of the world. It is not merely
about nature being randomized, but rather it is about the probabilities
in some sense “going negative” and cancelling each other!

https://www.youtube.com/watch?v=DfPeprQ7oGc
https://en.wikipedia.org/wiki/Double-slit_experiment
https://en.wikipedia.org/wiki/Double-slit_experiment
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To see what we mean by this, let us go back to the baseball exper-
iment. Suppose that the probability a ball passes through the left slit
is 𝑝𝐿 and the probability that it passes through the right slit is 𝑝𝑅.
Then, if we shoot 𝑁 balls out of each gun, we expect the wall will be
hit (𝑝𝐿 + 𝑝𝑅)𝑁 times. In contrast, in the quantum world of photons
instead of baseballs, it can sometimes be the case that in both the first
and second case the wall is hit with positive probabilities 𝑝𝐿 and 𝑝𝑅
respectively but somehow when both slits are open the wall (or a par-
ticular position in it) is not hit at all. It’s almost as if the probabilities
can “cancel each other out”.

To understand the way we model this in quantum mechanics, it is
helpful to think of a “lazy evaluation” approach to probability. We
can think of a probabilistic experiment such as shooting a baseball
through two slits in two different ways:

• When a ball is shot, “nature” tosses a coin and decides if it will go
through the left slit (which happens with probability 𝑝𝐿), right slit
(which happens with probability 𝑝𝑅), or bounce back. If it passes
through one of the slits then it will hit the wall. Later we can look at
the wall and find out whether or not this event happened, but the
fact that the event happened or not is determined independently of
whether or not we look at the wall.

• The other viewpoint is that when a ball is shot, “nature” computes
the probabilities 𝑝𝐿 and 𝑝𝑅 as before, but does not yet “toss the
coin” and determines what happened. Only when we actually
look at the wall, nature tosses a coin and with probability 𝑝𝐿 + 𝑝𝑅
ensures we see a dent. That is, nature uses “lazy evaluation”, and
only determines the result of a probabilistic experiment when we
decide to measure it.

While the first scenario seems much more natural, the end result
in both is the same (the wall is hit with probability 𝑝𝐿 + 𝑝𝑅) and so
the question of whether we should model nature as following the first
scenario or second one seems like asking about the proverbial tree that
falls in the forest with no one hearing about it.

However, when we want to describe the double slit experiment
with photons rather than baseballs, it is the second scenario that lends
itself better to a quantum generalization. Quantum mechanics as-
sociates a number 𝛼 known as an amplitude with each probabilistic
experiment. This number 𝛼 can be negative, and in fact even complex.
We never observe the amplitudes directly, since whenever we mea-
sure an event with amplitude 𝛼, nature tosses a coin and determines
that the event happens with probability |𝛼|2. However, the sign (or
in the complex case, phase) of the amplitudes can affect whether two
different events have constructive or destructive interference.
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Specifically, consider an event that can either occur or not (e.g. “de-
tector number 17 was hit by a photon”). In classical probability, we
model this by a probability distribution over the two outcomes: a pair
of non-negative numbers 𝑝 and 𝑞 such that 𝑝 + 𝑞 = 1, where 𝑝 corre-
sponds to the probability that the event occurs and 𝑞 corresponds to
the probability that the event does not occur. In quantum mechanics,
we model this also by pair of numbers, which we call amplitudes. This
is a pair of (potentially negative or even complex) numbers 𝛼 and 𝛽
such that |𝛼|2 + |𝛽|2 = 1. The probability that the event occurs is |𝛼|2
and the probability that it does not occur is |𝛽|2. In isolation, these
negative or complex numbers don’t matter much, since we anyway
square them to obtain probabilities. But the interaction of positive and
negative amplitudes can result in surprising cancellations where some-
how combining two scenarios where an event happens with positive
probability results in a scenario where it never does.

P
If you don’t find the above description confusing and
unintuitive, you probably didn’t get it. Please make
sure to re-read the above paragraphs until you are
thoroughly confused.

Quantum mechanics is a mathematical theory that allows us to
calculate and predict the results of the double-slit and many other ex-
periments. If you think of quantum mechanics as an explanation as to
what “really” goes on in the world, it can be rather confusing. How-
ever, if you simply “shut up and calculate” then it works amazingly
well at predicting experimental results. In particular, in the double
slit experiment, for any position in the wall, we can compute num-
bers 𝛼 and 𝛽 such that photons from the first and second slit hit that
position with probabilities |𝛼|2 and |𝛽|2 respectively. When we open
both slits, the probability that the position will be hit is proportional
to |𝛼 + 𝛽|2, and so in particular, if 𝛼 = −𝛽 then it will be the case that,
despite being hit when either slit one or slit two are open, the position
is not hit at all when they both are. If you are confused by quantum
mechanics, you are not alone: for decades people have been trying to
come up with explanations for “the underlying reality” behind quan-
tum mechanics, including Bohmian Mechanics, Many Worlds and
others. However, none of these interpretations have gained universal
acceptance and all of those (by design) yield the same experimental
predictions. Thus at this point many scientists prefer to just ignore the
question of what is the “true reality” and go back to simply “shutting
up and calculating”.

https://en.wikipedia.org/wiki/Interpretations_of_quantum_mechanics
https://en.wikipedia.org/wiki/De_Broglie%E2%80%93Bohm_theory
https://en.wikipedia.org/wiki/Many-worlds_interpretation
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Some of the counterintuitive properties that arise from amplitudes
or “negative probabilities” include:

• Interference - As we see here, probabilities can “cancel each other
out”.

• Measurement - The idea that probabilities are negative as long as
“no one is looking” and “collapse” to positive probabilities when
they are measured is deeply disturbing. Indeed, people have shown
that it can yield to various strange outcomes such as “spooky ac-
tions at a distance”, where we can measure an object at one place
and instantaneously (faster than the speed of light) cause a dif-
ference in the results of a measurements in a place far removed.
Unfortunately (or fortunately?) these strange outcomes have been
confirmed experimentally.

• Entanglement - The notion that two parts of the system could be
connected in this weird way where measuring one will affect the
other is known as quantum entanglement.

Again, as counter-intuitive as these concepts are, they have been
experimentally confirmed, so we just have to live with them.

R
Remark 18.1 — Complex vs real, other simplifications. If
(like the author) you are a bit intimidated by complex
numbers, don’t worry: you can think of all ampli-
tudes as real (though potentially negative) numbers
without loss of understanding. All the “magic” of
quantum computing already arises in this case, and
so we will often restrict attention to real amplitudes in
this chapter.
We will also only discuss so-called pure quantum
states, and not the more general notion of mixed states.
Pure states turn out to be sufficient for understanding
the algorithmic aspects of quantum computing.
More generally, this chapter is not meant to be a com-
plete description of quantum mechanics, quantum
information theory, or quantum computing, but rather
illustrate the main points where these differ from
classical computing.

18.2.1 Quantum computing and computation - an executive summary.
One of the strange aspects of the quantum-mechanical picture of the
world is that unlike in the billiard ball example, there is no obvious
algorithm to simulate the evolution of 𝑛 particles over 𝑡 time periods
in 𝑝𝑜𝑙𝑦(𝑛, 𝑡) steps. In fact, the natural way to simulate 𝑛 quantum par-
ticles will require a number of steps that is exponential in 𝑛. This is a
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2 As its title suggests, Feynman’s lecture was actually
focused on the other side of simulating physics
with a computer, but he mentioned that as a “side
remark” one could wonder if it’s possible to simulate
physics with a new kind of computer - a “quantum
computer” which would “not [be] a Turing machine,
but a machine of a different kind”. As far as I know,
Feynman did not suggest that such a computer could
be useful for computations completely outside the
domain of quantum simulation, and in fact he found
the question of whether quantum mechanics could
be simulated by a classical computer to be more
interesting.

3 I am using the theorist’ definition of conflating
“significant” with “super-polynomial”. As we’ll
see, Grover’s algorithm does offer a very generic
quadratic advantage in computation. Whether that
quadratic advantage will ever be good enough to
offset in practice the significant overhead in building
a quantum computer remains an open question.
We also don’t have evidence that super-polynomial
speedups can’t be achieved for some problems outside
the Factoring/Dlog or quantum simulation domains,
and there is at least one company banking on such
speedups actually being feasible.
4 This “99 percent” is a figure of speech, but not
completely so. It seems that for many web servers,
the TLS protocol (which based on the current non-
lattice based systems would be completely broken
by quantum computing) is responsible for about 1
percent of the CPU usage.

huge headache for scientists that actually need to do these calculations
in practice.

In the 1981, physicist Richard Feynman proposed to “turn this
lemon to lemonade” by making the following almost tautological
observation:

If a physical system cannot be simulated by a computer
in 𝑇 steps, the system can be considered as performing a
computation that would take more than 𝑇 steps

So, he asked whether one could design a quantum system such that
its outcome 𝑦 based on the initial condition 𝑥 would be some function
𝑦 = 𝑓(𝑥) such that (a) we don’t know how to efficiently compute
in any other way, and (b) is actually useful for something.2 In 1985,
David Deutsch formally suggested the notion of a quantum Turing
machine, and the model has been since refined in works of Detusch
and Josza and Bernstein and Vazirani. Such a system is now known as
a quantum computer.

For a while these hypothetical quantum computers seemed useful
for one of two things. First, to provide a general-purpose mecha-
nism to simulate a variety of the real quantum systems that people
care about. Second, as a challenge to the theory of computation’s ap-
proach to model efficient computation by Turing machines, though a
challenge that has little bearing to practice, given that this theoretical
“extra power” of quantum computer seemed to offer little advantage
in the problems people actually want to solve such as combinatorial
optimization, machine learning, data structures, etc..

To a significant extent, this is still true today. We have no real ev-
idence that quantum computers, when built, will offer truly signif-
icant3 advantage in 99 percent of the applications of computing.4
However, there is one cryptography-sized exception: In 1994 Peter
Shor showed that quantum computers can solve the integer factoring
and discrete logarithm in polynomial time. This result has captured
the imagination of a great many people, and completely energized
research into quantum computing.

This is both because the hardness of these particular problems
provides the foundations for securing such a huge part of our commu-
nications (and these days, our economy), as well as it was a powerful
demonstration that quantum computers could turn out to be useful
for problems that a-priori seemed to have nothing to do with quantum
physics.

At the moment there are several intensive efforts to construct large
scale quantum computers. It seems safe to say that, in the next five
years or so there will not be a quantum computer large enough to fac-
tor, say, a 1024 bit number. However, some quantum computers have

https://www.cs.berkeley.edu/~christos/classics/Feynman.pdf
http://www.dwavesys.com/
https://goo.gl/Gekjrc
https://goo.gl/Gekjrc
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5 Of course, given that “export grade” cryptography
that was supposed to disappear with 1990’s took
a long time to die, I imagine that we’ll still have
products running 1024 bit RSA when everyone has a
quantum laptop.

been built that achieved tasks that are either not known to be achieved
classically, or at least seem to require more resources classically than
they do for these quantum computers. When and if such a computer
is built that can break reasonable parameters of Diffie Hellman, RSA
and elliptic curve cryptography is anybody’s guess. It could also be
a “self destroying prophecy” whereby the existence of a small-scale
quantum computer would cause everyone to shift away to lattice-
based crypto which in turn will diminish the motivation to invest the
huge resources needed to build a large scale quantum computer.5

The above summary might be all that you need to know as a cryp-
tographer, and enough motivation to study lattice-based cryptography
as we do in this course. However, because quantum computing is
such a beautiful and (like cryptography) counter-intuitive concept,
we will try to give at least a hint of what it is about and how Shor’s
algorithm works.

18.3 QUANTUM 101

We now present some of the basic notions in quantum information.
It is very useful to contrast these notions to the setting of probabilistic
systems and see how “negative probabilities” make a difference. This
discussion is somewhat brief. The chapter on quantum computation
in my book with Arora (see draft here) is one relatively short resource
that contains essentially everything we discuss here. See also this
blog post of Aaronson for a high level explanation of Shor’s algorithm
which ends with links to several more detailed expositions. See also
this lecture of Aaronson for a great discussion of the feasibility of
quantum computing (Aaronson’s course lecture notes and the book
that they spawned are fantastic reads as well).

States: We will consider a simple quantum system that includes 𝑛
objects (e.g., electrons/photons/transistors/etc..) each of which can be
in either an “on” or “off” state - i.e., each of them can encode a single
bit of information, but to emphasize the “quantumness” we will call it
a qubit. A probability distribution over such a system can be described
as a 2𝑛 dimensional vector 𝑣 with non-negative entries summing up
to 1, where for every 𝑥 ∈ {0, 1}𝑛, 𝑣𝑥 denotes the probability that the
system is in state 𝑥. As we mentioned, quantum mechanics allows
negative (in fact even complex) probabilities and so a quantum state
of the system can be described as a 2𝑛 dimensional vector 𝑣 such that
‖𝑣‖2 = ∑𝑥 |𝑣𝑥|2 = 1.

Measurement: Suppose that we were in the classical probabilistic
setting, and that the 𝑛 bits are simply random coins. Thus we can
describe the state of the system by the 2𝑛-dimensional vector 𝑣 such
that 𝑣𝑥 = 2−𝑛 for all 𝑥. If we measure the system and see what the coins

http://blog.cryptographyengineering.com/2016/03/attack-of-week-drown.html
http://blog.cryptographyengineering.com/2016/03/attack-of-week-drown.html
http://theory.cs.princeton.edu/complexity/
http://theory.cs.princeton.edu/complexity/ab_quantumchap.pdf
http://www.scottaaronson.com/blog/?p=208
http://www.scottaaronson.com/democritus/lec14.html
http://www.scottaaronson.com/democritus/default.html
http://www.amazon.com/Quantum-Computing-since-Democritus-Aaronson/dp/0521199565
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came out, we will get the value 𝑥 with probability 𝑣𝑥. Naturally, if we
measure the system twice we will get the same result. Thus, after we
see that the coin is 𝑥, the new state of the system collapses to a vector 𝑣
such that 𝑣𝑦 = 1 if 𝑦 = 𝑥 and 𝑣𝑦 = 0 if 𝑦 ≠ 𝑥. In a quantum state, we do
the same thing: if we measure a vector 𝑣 corresponds to turning it with
probability |𝑣𝑥|2 into a vector that has 1 on coordinate 𝑥 and zero on
all the other coordinates.

Operations: In the classical probabilistic setting, if we have a system
in state 𝑣 and we apply some function 𝑓 ∶ {0, 1}𝑛 → {0, 1}𝑛 then this
transforms 𝑣 to the state 𝑤 such that 𝑤𝑦 = ∑𝑥∶𝑓(𝑥)=𝑦 𝑣𝑥.

Another way to state this, is that 𝑤 = 𝑀𝑓 where 𝑀𝑓 is the matrix
such that 𝑀𝑓(𝑥),𝑥 = 1 for all 𝑥 and all other entries are 0. If we toss a
coin and decide with probability 1/2 to apply 𝑓 and with probability
1/2 to apply 𝑔, this corresponds to the matrix (1/2)𝑀𝑓 + (1/2)𝑀𝑔.
More generally, the set of operations that we can apply can be cap-
tured as the set of convex combinations of all such matrices- this is
simply the set of non-negative matrices whose columns all sum up to
1- the stochastic matrices. In the quantum case, the operations we can
apply to a quantum state are encoded as a unitary matrix, which is a
matrix 𝑀 such that ‖𝑀𝑣‖ = ‖𝑣‖ for all vectors 𝑣.

Elementary operations: Of course, even in the probabilistic setting, not
every function 𝑓 ∶ {0, 1}𝑛 → {0, 1}𝑛 is efficiently computable. We
think of a function as efficiently computable if it is composed of poly-
nomially many elementary operations, that involve at most 2 or 3 bits
or so (i.e., Boolean gates). That is, we say that a matrix 𝑀 is elemen-
tary if it only modifies three bits. That is, 𝑀 is obtained by “lifting”
some 8 × 8 matrix 𝑀 ′ that operates on three bits 𝑖, 𝑗, 𝑘, leaving all the
rest of the bits intact. Formally, given an 8 × 8 matrix 𝑀 ′ (indexed by
strings in {0, 1}3) and three distinct indices 𝑖 < 𝑗 < 𝑘 ∈ {1,… , 𝑛}
we define the 𝑛-lift of 𝑀 ′ with indices 𝑖, 𝑗, 𝑘 to be the 2𝑛 × 2𝑛 matrix 𝑀
such that for every strings 𝑥 and 𝑦 that agree with each other on all
coordinates except possibly 𝑖, 𝑗, 𝑘, 𝑀𝑥,𝑦 = 𝑀 ′

𝑥𝑖𝑥𝑗𝑥𝑘,𝑦𝑖𝑦𝑗𝑦𝑘
and other-

wise 𝑀𝑥,𝑦 = 0. Note that if 𝑀 ′ is of the form 𝑀 ′
𝑓 for some function

𝑓 ∶ {0, 1}3 → {0, 1}3 then 𝑀 = 𝑀𝑔 where 𝑔 ∶ {0, 1}𝑛 → {0, 1}𝑛 is
defined as 𝑔(𝑥) = 𝑓(𝑥𝑖𝑥𝑗𝑥𝑘). We define 𝑀 as an elementary stochastic
matrix or a probabilistic gate if 𝑀 is equal to an 𝑛 lift of some stochas-
tic 8 × 8 matrix 𝑀 ′. The quantum case is similar: a quantum gate is a
2𝑛 ×2𝑛 matrix that is an 𝑁 lift of some unitary 8×8 matrix 𝑀 ′. It is an
exercise to prove that lifting preserves stochasticity and unitarity. That
is, every probabilistic gate is a stochastic matrix and every quantum
gate is a unitary matrix.
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6 It is a good exercise to verify that for every 𝑔 ∶
{0, 1}𝑛 → {0, 1}𝑛, 𝑀𝑔 is unitary if and only if 𝑔 is a
permutation.

Complexity: For every stochastic matrix 𝑀 we can define its random-
ized complexity, denoted as 𝑅(𝑀) to be the minimum number 𝑇 such
that 𝑀 is can be (approximately) obtained by combining 𝑇 elemen-
tary probabilistic gates. To be concrete, we can define 𝑅(𝑀) to be the
minimum 𝑇 such that there exists 𝑇 elementary matrices 𝑀1,… ,𝑀𝑇
such that for every 𝑥, ∑𝑦 |𝑀𝑦,𝑥 − (𝑀𝑇 ⋯𝑀1)𝑦,𝑥| < 0.1. (It can be
shown that 𝑅(𝑀) is finite and in fact at most 10𝑛 for every 𝑀 ; we can
do so by writing 𝑀 as a convex combination of function and writing
every function as a composition of functions that map a single string
𝑥 to 𝑦, keeping all other inputs intact.) We will say that a probabilistic
process 𝑀 mapping distributions on {0, 1}𝑛 to distributions on {0, 1}𝑛
is efficiently classically computable if 𝑅(𝑀) ≤ 𝑝𝑜𝑙𝑦(𝑛). If 𝑀 is a unitary
matrix, then we define the quantum complexity of 𝑀 , denoted as 𝑄(𝑀),
to be the minimum number 𝑇 such that there are quantum gates
𝑀1,… ,𝑀𝑇 satisfying that for every 𝑥, ∑𝑦 |𝑀𝑦,𝑥 − (𝑀𝑇 ⋯𝑀1)𝑦,𝑥|2 <
0.1.

We say that 𝑀 is efficiently quantumly computable if 𝑄(𝑀) ≤ 𝑝𝑜𝑙𝑦(𝑛).

Computing functions: We have defined what it means for an operator
to be probabilistically or quantumly efficiently computable, but we
typically are interested in computing some function 𝑓 ∶ {0, 1}𝑚 →
{0, 1}ℓ. The idea is that we say that 𝑓 is efficiently computable if the
corresponding operator is efficiently computable, except that we also
allow to use extra memory and so to embed 𝑓 in some 𝑛 = 𝑝𝑜𝑙𝑦(𝑚).
We define 𝑓 to be efficiently classically computable if there is some 𝑛 =
𝑝𝑜𝑙𝑦(𝑚) such that the operator 𝑀𝑔 is efficiently classically computable
where 𝑔 ∶ {0, 1}𝑛 → {0, 1}𝑛 is defined such that 𝑔(𝑥1,… , 𝑥𝑛) =
𝑓(𝑥1,… , 𝑥𝑚). In the quantum case we have a slight twist since the
operator 𝑀𝑔 is not necessarily a unitary matrix.6 Therefore we say that
𝑓 is efficiently quantumly computable if there is 𝑛 = 𝑝𝑜𝑙𝑦(𝑚) such that the
operator 𝑀𝑞 is efficiently quantumly computable where 𝑔 ∶ {0, 1}𝑛 →
{0, 1}𝑛 is defined as 𝑔(𝑥1,… , 𝑥𝑛) = 𝑥1 ⋯𝑥𝑚‖(𝑓(𝑥1 ⋯𝑥𝑚)0𝑛−𝑚−ℓ ⊕
𝑥𝑚+1 ⋯𝑥𝑛).

Quantum and classical computation: The way we defined what it means
for a function to be efficiently quantumly computable, it might not be
clear that if 𝑓 ∶ {0, 1}𝑚 → {0, 1}ℓ is a function that we can compute
by a polynomial size Boolean circuit (e.g., combining polynomially
many AND, OR and NOT gates) then it is also quantumly efficiently
computable. The idea is that for every gate 𝑔 ∶ {0, 1}2 → {0, 1} we
can define an 8 × 8 unitary matrix 𝑀ℎ where ℎ ∶ {0, 1}3 → {0, 1}3
has the form ℎ(𝑎, 𝑏, 𝑐) = 𝑎, 𝑏, 𝑐 ⊕ 𝑔(𝑎, 𝑏). So, if 𝑓 has a circuit of 𝑠
gates, then we can dedicate an extra bit for every one of these gates
and then run the corresponding 𝑠 unitary operations one by one, at
the end of which we will get an operator that computes the mapping
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7 It is a good exercise to show that if 𝑀 is a proba-
bilistic process with 𝑅(𝑀) ≤ 𝑇 then there exists a
probabilistic circuit of size, say, 100𝑇𝑛2 that approx-
imately computes 𝑀 in the sense that for every input
𝑥, ∑𝑦∈{0,1}𝑛 ∣Pr[𝐶(𝑥) = 𝑦] −𝑀𝑥,𝑦∣ < 1/3.

𝑥1,… , 𝑥𝑚+ℓ+𝑠 = 𝑥1 ⋯𝑥𝑚‖𝑥𝑚+1 ⋯𝑥𝑚+𝑠 ⊕ 𝑓(𝑥1,… , 𝑥𝑚)‖𝑔(𝑥1 …𝑥𝑚)
where the the ℓ + 𝑖𝑡ℎ bit of 𝑔(𝑥1,… , 𝑥𝑛) is the result of applying the
𝑖𝑡ℎ gate in the calculation of 𝑓(𝑥1,… , 𝑥𝑚). So this is “almost” what we
wanted except that we have this “extra junk” that we need to get rid
of. The idea is that we now simply run the same computation again
which will basically we mean we XOR another copy of 𝑔(𝑥1,… , 𝑥𝑚) to
the last 𝑠 bits, but since 𝑔(𝑥) ⊕ 𝑔(𝑥) = 0𝑠 we get that we compute the
map 𝑥 ↦ 𝑥1 ⋯𝑥𝑚‖(𝑓(𝑥1,… , 𝑥𝑚)0𝑠 ⊕ 𝑥𝑚+1 ⋯𝑥𝑚+ℓ+𝑠) as desired.

The ”obviously exponential” fallacy: A priori it might seem “obvious”
that quantum computing is exponentially powerful, since to com-
pute a quantum computation on 𝑛 bits we need to maintain the 2𝑛
dimensional state vector and apply 2𝑛 × 2𝑛 matrices to it. Indeed
popular descriptions of quantum computing (too) often say some-
thing along the lines that the difference between quantum and clas-
sical computer is that a classic bit can either be zero or one while a
qubit can be in both states at once, and so in many qubits a quantum
computer can perform exponentially many computations at once. De-
pending on how you interpret this, this description is either false or
would apply equally well to probabilistic computation. However, for
probabilistic computation it is a not too hard exercise to show that if
𝑓 ∶ {0, 1}𝑚 → {0, 1}𝑛 is an efficiently computable function then it has
a polynomial size circuit of AND, OR and NOT gates.7 Moreover, this
“obvious” approach for simulating a quantum computation will take
not just exponential time but exponential space as well, while it is not
hard to show that using a simple recursive formula one can calculate
the final quantum state using polynomial space (in physics parlance this
is known as “Feynman path integrals”). So, the exponentially long
vector description by itself does not imply that quantum computers
are exponentially powerful. Indeed, we cannot prove that they are
(since in particular we can’t prove that every polynomial space cal-
culation can be done in polynomial time, in complexity parlance we
don’t know how to rule out that 𝑃 = PSPACE), but we do have some
problems (integer factoring most prominently) for which they do
provide exponential speedup over the currently best known classical
(deterministic or probabilistic) algorithms.

18.3.1 Physically realizing quantum computation
To realize quantum computation one needs to create a system with 𝑛
independent binary states (i.e., “qubits”), and be able to manipulate
small subsets of two or three of these qubits to change their state.
While by the way we defined operations above it might seem that
one needs to be able to perform arbitrary unitary operations on these
two or three qubits, it turns out that there several choices for universal
sets - a small constant number of gates that generate all others. The
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Figure 18.3: Superconducting quantum computer
prototype at Google. Image credit: Google / MIT
Technology Review.

biggest challenge is how to keep the system from being measured and
collapsing to a single classical combination of states. This is sometimes
known as the coherence time of the system. The threshold theorem says
that there is some absolute constant level of errors 𝜏 so that if errors
are created at every gate at rate smaller than 𝜏 then we can recover
from those and perform arbitrary long computations. (Of course there
are different ways to model the errors and so there are actually several
threshold theorems corresponding to various noise models).

There have been several proposals to build quantum computers:

• Superconducting quantum computers use super-conducting elec-
tric circuits to do quantum computation. These are currently the
devices with largest number of fully controllable qubits.

• At Harvard, Lukin’s group is using cold atoms to implement quan-
tum computers.

• Trapped ion quantum computers Use the states of an ion to sim-
ulate a qubit. People have made some recent advances on these
computers too. For example, an ion-trap computer was used to im-
plement Shor’s algorithm to factor 15. (It turns out that 15 = 3 × 5
:) )

• Topological quantum computers use a different technology, which
is more stable by design but arguably harder to manipulate to cre-
ate quantum computers.

These approaches are not mutually exclusive and it could be that
ultimately quantum computers are built by combining all of them
together. At the moment, we have devices with about 100 qubits,
and about 1% error per gate. Such restricted machines are sometimes
called “Noisy Intermediate-Scale Quantum Computers” or “NISQ”.
See this article by John Preskil for some of the progress and applica-
tions of such more restricted devices. If the number of qubits is in-
creased and the error is decreased by one or two orders of magnitude,
we could start seeing more applications.

18.3.2 Bra-ket notation
Quantum computing is very confusing and counterintuitive for many
reasons. But there is also a “cultural” reason why people sometimes
find quantum arguments hard to follow. Quantum folks follow their
own special notation for vectors. Many non quantum people find it
ugly and confusing, while quantum folks secretly wish they people
used it all the time, not just for non-quantum linear algebra, but also
for restaurant bills and elemntary school math classes.

https://courses.cs.washington.edu/courses/cse599d/06wi/lecturenotes19.pdf
https://arxiv.org/abs/1905.13641
https://lukin.physics.harvard.edu/arrays-cold-atoms
https://en.wikipedia.org/wiki/Trapped_ion_quantum_computer
http://iontrap.umd.edu/wp-content/uploads/2016/02/1602.02840v1.pdf
http://arxiv.org/abs/1507.08852
http://arxiv.org/abs/1507.08852
https://en.wikipedia.org/wiki/Topological_quantum_computer
https://arxiv.org/abs/1801.00862
https://en.wikipedia.org/wiki/Bra%E2%80%93ket_notation
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8 If you are curious, there is an analog notation for
row vectors as ⟨𝑥|. Generally if 𝑢 is a vector then
|𝑢⟩ would be its form as a column vector and ⟨𝑢|
would be its form as a row product. Hence since
𝑢⊤𝑣 = ⟨𝑢, 𝑣⟩ the inner product of 𝑢 and 𝑏 can be
thought of as ⟨𝑢||𝑣⟩ . The outer product (the matrix
whose 𝑖, 𝑗 entry is 𝑢𝑖𝑣𝑗) is denoted as |𝑢⟩⟨𝑣|.

9 If you are extremely paranoid about Alice and Bob
communicating with one another, you can coordinate
with your assistant to perform the experiment exactly
at the same time, and make sure that the rooms
are sufficiently far apart (e.g., are on two different
continents, or maybe even one is on the moon and
another is on earth) so that Alice and Bob couldn’t
communicate to each other in time the results of their
respective coins even if they do so at the speed of
light.

The notation is actually not so confusing. If 𝑥 ∈ {0, 1}𝑛 then |𝑥⟩
denotes the 𝑥𝑡ℎ standard basis vector in 2𝑛 dimension. That is |𝑥⟩ 2𝑛-
dimensional column vector that has 1 in the 𝑥𝑡ℎ coordinate and zero
everywhere else. So, we can describe the column vector that has 𝛼𝑥
in the 𝑥𝑡ℎ entry as ∑𝑥∈{0,1}𝑛 𝛼𝑥|𝑥⟩. One more piece of notation that is
useful is that if 𝑥 ∈ {0, 1}𝑛 and 𝑦 ∈ {0, 1}𝑚 then we identify |𝑥⟩|𝑦⟩ with
|𝑥𝑦⟩ (that is, the 2𝑛+𝑚 dimensional vector that has 1 in the coordinate
corresponding to the concatenation of 𝑥 and 𝑦, and zero everywhere
else). This is more or less all you need to know about this notation to
follow this lecture.8

A quantum gate is an operation on at most three bits, and so it can
be completely specified by what it does to the 8 vectors |000⟩,… , |111⟩.
Quantum states are always unit vectors and so we sometimes omit the
normalization for convenience; for example we will identify the state
|0⟩ + |1⟩ with its normalized version 1√

2 |0⟩ +
1√
2 |1⟩.

18.4 BELL’S INEQUALITY

There is something weird about quantum mechanics. In 1935 Einstein,
Podolsky and Rosen (EPR) tried to pinpoint this issue by highlighting
a previously unrealized corollary of this theory. They showed that
the idea that nature does not determine the results of an experiment
until it is measured results in so called “spooky action at a distance”.
Namely, making a measurement of one object may instantaneously
effect the state (i.e., the vector of amplitudes) of another object in the
other end of the universe.

Since the vector of amplitudes is just a mathematical abstraction,
the EPR paper was considered to be merely a thought experiment for
philosophers to be concerned about, without bearing on experiments.
This changed when in 1965 John Bell showed an actual experiment
to test the predictions of EPR and hence pit intuitive common sense
against the quantum mechanics. Quantum mechanics won: it turns
out that it is in fact possible to use measurements to create correlations
between the states of objects far removed from one another that cannot
be explained by any prior theory. Nonetheless, since the results of
these experiments are so obviously wrong to anyone that has ever sat
in an armchair, that there are still a number of Bell denialists arguing
that this can’t be true and quantum mechanics is wrong.

So, what is this Bell’s Inequality? Suppose that Alice and Bob try
to convince you they have telepathic ability, and they aim to prove it
via the following experiment. Alice and Bob will be in separate closed
rooms.9 You will interrogate Alice and your associate will interrogate
Bob. You choose a random bit 𝑥 ∈ {0, 1} and your associate chooses
a random 𝑦 ∈ {0, 1}. We let 𝑎 be Alice’s response and 𝑏 be Bob’s

http://plato.stanford.edu/entries/qt-epr/
http://plato.stanford.edu/entries/qt-epr/
http://www.scottaaronson.com/blog/?p=2464
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10 This form of Bell’s game was shown by Clauser,
Horne, Shimony, and Holt.

11 Theorem 18.2 below assumes that Alice and Bob
use deterministic strategies 𝑓 and 𝑔 respectively. More
generally, Alice and Bob could use a randomized
strategy, or equivalently, each could choose 𝑓 and
𝑔 from some distributions ℱ and 𝒢 respectively.
However the averaging principle (??) implies that if
all possible deterministic strategies succeed with
probability at most 3/4, then the same is true for all
randomized strategies.

12 More accurately, one either has to give up on a
“billiard ball type” theory of the universe or believe
in telepathy (believe it or not, some scientists went for
the latter option).

13 The strategy we show is not the best one. Alice and
Bob can in fact succeed with probability cos2(𝜋/8) ∼
0.854.

response. We say that Alice and Bob win this experiment if 𝑎 ⊕ 𝑏 =
𝑥 ∧ 𝑦. In other words, Alice and Bob need to output two bits that
disagree if 𝑥 = 𝑦 = 1 and agree otherwise.10

Now if Alice and Bob are not telepathic, then they need to agree in
advance on some strategy. It’s not hard for Alice and Bob to succeed
with probability 3/4: just always output the same bit. Moreover, by
doing some case analysis, we can show that no matter what strategy
they use, Alice and Bob cannot succeed with higher probability than
that:11

Theorem 18.2 — Bell’s Inequality. For every two functions 𝑓, 𝑔 ∶ {0, 1} →
{0, 1}, Pr𝑥,𝑦∈{0,1}[𝑓(𝑥) ⊕ 𝑔(𝑦) = 𝑥 ∧ 𝑦] ≤ 3/4.

Proof. Since the probability is taken over all four choices of 𝑥, 𝑦 ∈
{0, 1}, the only way the theorem can be violated if if there exist two
functions 𝑓, 𝑔 that satisfy

𝑓(𝑥) ⊕ 𝑔(𝑦) = 𝑥 ∧ 𝑦

for all the four choices of 𝑥, 𝑦 ∈ {0, 1}2. Let’s plug in all these four
choices and see what we get (below we use the equalities 𝑧 ⊕ 0 = 𝑧,
𝑧 ∧ 0 = 0 and 𝑧 ∧ 1 = 𝑧):

𝑓(0) ⊕ 𝑔(0) = 0 (plugging in 𝑥 = 0, 𝑦 = 0)
𝑓(0) ⊕ 𝑔(1) = 0 (plugging in 𝑥 = 0, 𝑦 = 1)
𝑓(1) ⊕ 𝑔(0) = 0 (plugging in 𝑥 = 1, 𝑦 = 0)
𝑓(1) ⊕ 𝑔(1) = 1 (plugging in 𝑥 = 1, 𝑦 = 1)

If we XOR together the first and second equalities we get 𝑔(0) ⊕
𝑔(1) = 0 while if we XOR together the third and fourth equalities we
get 𝑔(0) ⊕ 𝑔(1) = 1, thus obtaining a contradiction.

■

An amazing experimentally verified fact is that quantum mechanics
allows for “telepathy”.12 Specifically, it has been shown that using the
weirdness of quantum mechanics, there is in fact a strategy for Alice
and Bob to succeed in this game with probability larger than 3/4 (in
fact, they can succeed with probability about 0.85, see Lemma 18.3).

18.5 ANALYSIS OF BELL’S INEQUALITY

Now that we have the notation in place, we can show a strategy for
Alice and Bob to display “quantum telepathy” in Bell’s Game. Re-
call that in the classical case, Alice and Bob can succeed in the “Bell
Game” with probability at most 3/4 = 0.75. We now show that quan-
tum mechanics allows them to succeed with probability at least 0.8.13

https://goo.gl/wvJGZU
https://goo.gl/wvJGZU
https://en.wikipedia.org/wiki/Superdeterminism
http://arxiv.org/abs/1508.05949
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14 We are using the (not too hard) observation that
the result of this experiment is the same regardless of
the order in which Alice and Bob apply their rotations
and measurements.

Lemma 18.3 There is a 2-qubit quantum state 𝜓 ∈ ℂ4 so that if Alice
has access to the first qubit of 𝜓, can manipulate and measure it and
output 𝑎 ∈ {0, 1} and Bob has access to the second qubit of 𝜓 and can
manipulate and measure it and output 𝑏 ∈ {0, 1} then Pr[𝑎 ⊕ 𝑏 =
𝑥 ∧ 𝑦] ≥ 0.8.

Proof. Alice and Bob will start by preparing a 2-qubit quantum system
in the state

𝜓 = 1√
2 |00⟩ +

1√
2 |11⟩

(this state is known as an EPR pair). Alice takes the first qubit of
the system to her room, and Bob takes the qubit to his room. Now,
when Alice receives 𝑥 if 𝑥 = 0 she does nothing and if 𝑥 = 1 she ap-

plies the unitary map 𝑅−𝜋/8 to her qubit where 𝑅𝜃 = (𝑐𝑜𝑠𝜃 − sin 𝜃
sin 𝜃 cos 𝜃 )

is the unitary operation corresponding to rotation in the plane with
angle 𝜃. When Bob receives 𝑦, if 𝑦 = 0 he does nothing and if 𝑦 = 1
he applies the unitary map 𝑅𝜋/8 to his qubit. Then each one of them
measures their qubit and sends this as their response.

Recall that to win the game Bob and Alice want their outputs to
be more likely to differ if 𝑥 = 𝑦 = 1 and to be more likely to agree
otherwise. We will split the analysis in one case for each of the four
possible values of 𝑥 and 𝑦.

Case 1: 𝑥 = 0 and 𝑦 = 0. If 𝑥 = 𝑦 = 0 then the state does not
change. * Because the state 𝜓 is proportional to |00⟩ + |11⟩, the mea-
surements of Bob and Alice will always agree (if Alice measures 0
then the state collapses to |00⟩ and so Bob measures 0 as well, and
similarly for 1). Hence in the case 𝑥 = 𝑦 = 1, Alice and Bob always
win.

Case 2: 𝑥 = 0 and 𝑦 = 1. If 𝑥 = 0 and 𝑦 = 1 then after Alice
measures her bit, if she gets 0 then the system collapses to the state
|00⟩, in which case after Bob performs his rotation, his qubit is in
the state cos(𝜋/8)|0⟩ + sin(𝜋/8)|1⟩. Thus, when Bob measures his
qubit, he will get 0 (and hence agree with Alice) with probability
cos2(𝜋/8) ≥ 0.85. Similarly, if Alice gets 1 then the system collapses
to |11⟩, in which case after rotation Bob’s qubit will be in the state
− sin(𝜋/8)|0⟩ + cos(𝜋/8)|1⟩ and so once again he will agree with Alice
with probability cos2(𝜋/8).

The analysis for Case 3, where 𝑥 = 1 and 𝑦 = 0, is completely
analogous to Case 2. Hence Alice and Bob will agree with probability
cos2(𝜋/8) in this case as well.14

https://en.wikipedia.org/wiki/EPR_paradox
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Case 4: 𝑥 = 1 and 𝑦 = 1. For the case that 𝑥 = 1 and 𝑦 = 1,
after both Alice and Bob perform their rotations, the state will be
proportional to

𝑅−𝜋/8|0⟩𝑅𝜋/8|0⟩ + 𝑅−𝜋/8|1⟩𝑅𝜋/8|1⟩ . (18.1)

Intuitively, since we rotate one state by 45 degrees and the other
state by -45 degrees, they will become orthogonal to each other, and
the measurements will behave like independent coin tosses that agree
with probability 1/2. However, for the sake of completeness, we now
show the full calculation.

Opening up the coefficients and using cos(−𝑥) = cos(𝑥) and
sin(−𝑥) = − sin(𝑥), we can see that (18.1) is proportional to

cos2(𝜋/8)|00⟩ + cos(𝜋/8) sin(𝜋/8)|01⟩
− sin(𝜋/8) cos(𝜋/8)|10⟩ + sin2(𝜋/8)|11⟩

− sin2(𝜋/8)|00⟩ + sin(𝜋/8) cos(𝜋/8)|01⟩
− cos(𝜋/8) sin(𝜋/8)|10⟩ + cos2(𝜋/8)|11⟩ .

Using the trigonometric identities 2 sin(𝛼) cos(𝛼) = sin(2𝛼) and
cos( 𝛼) − sin2(𝛼) = cos(2𝛼), we see that the probability of getting any
one of |00⟩, |10⟩, |01⟩, |11⟩ is proportional to cos(𝜋/4) = sin(𝜋/4) = 1√

2 .
Hence all four options for (𝑎, 𝑏) are equally likely, which mean that in
this case 𝑎 = 𝑏 with probability 0.5.

Taking all the four cases together, the overall probability of winning
the game is at least 1

4 ⋅ 1 + 1
2 ⋅ 0.85 + 1

4 ⋅ 0.5 = 0.8.
■

R
Remark 18.4 — Quantum vs probabilistic strategies. It
is instructive to understand what is it about quan-
tum mechanics that enabled this gain in Bell’s
Inequality. For this, consider the following anal-
ogous probabilistic strategy for Alice and Bob.
They agree that each one of them output 0 if he
or she get 0 as input and outputs 1 with prob-
ability 𝑝 if they get 1 as input. In this case one
can see that their success probability would be
1
4 ⋅ 1 + 1

2 (1 − 𝑝) + 1
4 [2𝑝(1 − 𝑝)] = 0.75 − 0.5𝑝2 ≤ 0.75.

The quantum strategy we described above can be
thought of as a variant of the probabilistic strategy for
parameter 𝑝 set to sin2(𝜋/8) = 0.15. But in the case
𝑥 = 𝑦 = 1, instead of disagreeing only with probability
2𝑝(1 − 𝑝) = 1/4, because we can use these negative
probabilities in the quantum world and rotate the state
in opposite directions, and hence the probability of
disagreement ends up being sin2(𝜋/4) = 0.5.
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18.6 GROVER’S ALGORITHM

Shor’s Algorithm, which we’ll see in the next lecture, is an amazing
achievement, but it only applies to very particular problems. It does
not seem to be relevant to breaking AES, lattice based cryptography,
or problems not related to quantum computing at all such as schedul-
ing, constraint satisfaction, traveling salesperson etc.. etc.. Indeed,
for the most general form of these search problems, classically we
don’t how to do anything much better than brute force search, which
takes 2𝑛 time over an 𝑛-bit domain. Lev Grover showed that quantum
computers can obtain a quadratic improvement over this brute force
search, solving SAT in 2𝑛/2 time. The effect of Grover’s algorithm on
cryptography is fairly mild: one essentially needs to double the key
lengths of symmetric primitives. But beyond cryptography, if large
scale quantum computers end up being built, Grover search and its
variants might end up being some of the most useful computational
problems they will tackle. Grover’s theorem is the following:

Theorem (Grover search , 1996): There is a quantum 𝑂(2𝑛/2𝑝𝑜𝑙𝑦(𝑛))-
time algorithm that given a 𝑝𝑜𝑙𝑦(𝑛)-sized circuit computing a function
𝑓 ∶ {0, 1}𝑛 → {0, 1} outputs a string 𝑥∗ ∈ {0, 1}𝑛 such that 𝑓(𝑥∗) = 1.

Proof sketch: The proof is not hard but we only sketch it here. The
general idea can be illustrated in the case that there exists a single 𝑥∗

satisfying 𝑓(𝑥∗) = 1. (There is a classical reduction from the general
case to this problem.) As in Simon’s algorithm, we can efficiently ini-
tialize an 𝑛-qubit system to the uniform state 𝑢 = 2−𝑛/2 ∑𝑥∈{0,1}𝑛 |𝑥⟩
which has 2−𝑛/2 dot product with |𝑥∗⟩. Of course if we measure 𝑢, we
only have probability (2−𝑛/2)2 = 2−𝑛 of obtaining the value 𝑥∗. Our
goal would be to use 𝑂(2𝑛/2) calls to the oracle to transform the sys-
tem to a state 𝑣 with dot product at least some constant 𝜖 > 0 with the
state |𝑥∗⟩.

It is an exercise to show that using 𝐻𝑎𝑑 gets we can efficiently com-
pute the unitary operator 𝑈 such that 𝑈𝑢 = 𝑢 and 𝑈𝑣 = −𝑣 for every
𝑣 orthogonal to 𝑢. Also, using the circuit for 𝑓 , we can efficiently com-
pute the unitary operator 𝑈 ∗ such that 𝑈∗|𝑥⟩ = |𝑥⟩ for all 𝑥 ≠ 𝑥∗

and 𝑈 ∗|𝑥∗⟩ = −|𝑥∗⟩. It turns out that 𝑂(2𝑛/2) applications of UU∗

to 𝑢 yield a vector 𝑣 with Ω(1) inner product with |𝑥∗⟩. To see why,
consider what these operators do in the two dimensional linear sub-
space spanned by 𝑢 and |𝑥∗⟩. (Note that the initial state 𝑢 is in this
subspace and all our operators preserve this property.) Let 𝑢⟂ be the
unit vector orthogonal to 𝑢 in this subspace and let 𝑥∗

⟂ be the unit vec-
tor orthogonal to |𝑥∗⟩ in this subspace. Restricted to this subspace, 𝑈 ∗

is a reflection along the axis 𝑥∗
⟂ and 𝑈 is a reflection along the axis 𝑢.
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Now, let 𝜃 be the angle between 𝑢 and 𝑥∗
⟂. These vectors are very

close to each other and so 𝜃 is very small but not zero - it is equal to
sin−1(2−𝑛/2) which is roughly 2−𝑛/2. Now if our state 𝑣 has angle
𝛼 ≥ 0 with 𝑢, then as long as 𝛼 is not too large (say 𝛼 < 𝜋/8) then
this means that 𝑣 has angle 𝑢 + 𝜃 with 𝑥∗

⟂. That means that 𝑈∗𝑣 will
have angle −𝛼 − 𝜃 with 𝑥∗

⟂ or −𝛼 − 2𝜃 with 𝑢, and hence UU∗𝑣 will
have angle 𝛼+2𝜃 with 𝑢. Hence in one application from UU∗ we move
2𝜃 radians away from 𝑢, and in 𝑂(2−𝑛/2) steps the angle between 𝑢
and our state will be at least some constant 𝜖 > 0. Since we live in the
two dimensional space spanned by 𝑢 and |𝑥⟩, it would mean that the
dot product of our state and |𝑥⟩ will be at least some constant as well.
QED




