
1 In case you are curious, the factors of 𝑚 are
1, 172, 192, 558, 529, 627, 184, 841, 954, 822, 099
and 328, 963, 108, 995, 562, 790, 517, 498, 071, 717.

13
Zero knowledge proofs

The notion of proof is central to so many fields. In mathematics, we
want to prove that a certain assertion is correct. In other sciences, we
often want to accumulate a preponderance of evidence (or statistical
significance) to reject certain hypotheses. In criminal law the prose-
cution famously needs to prove its case “beyond a reasonable doubt”.
Cryptography turns out to give some new twists on this ancient no-
tion.

Typically a proof that some assertion X is true, also reveals
some information about why X is true. When Hercule Poirot
proves that Norman Gale killed Madame Giselle he does so by
showing how Gale committed the murder by dressing up as a flight
attendant and stabbing Madame Gisselle with a poisoned dart.
Could Hercule convince us beyond a reasonable doubt that Gale
did the crime without giving any information on how the crime
was committed? Can the Russians prove to the U.S. that a sealed
box contains an authentic nuclear warhead without revealing
anything about its design? Can I prove to you that the number 𝑚 =
385, 608, 108, 395, 369, 363, 400, 501, 273, 594, 475, 104, 405, 448, 848, 047,062, 278, 473, 983
has a prime factor whose last digit is 7 without giving you any infor-
mation about 𝑚’s prime factors? We won’t answer the first question,
but will show some insights on the latter two.1

Zero knowledge proofs are proofs that fully convince that a statement
is true without yielding any additional knowledge. So, after seeing a zero
knowledge proof that 𝑚 has a factor ending with 7, you’ll be no closer
to knowing 𝑚’s factorization than you were before. Zero knowledge
proofs were invented by Goldwasser, Micali and Rackoff in 1982 and
have since been used in great many settings. How would you achieve
such a thing, or even define it? And why on earth would it be useful?
This is the topic of this lecture.

Compiled on 11.17.2021 22:35

272 an intensive introduction to cryptography

2 To be fair, “only” about 170 million Americans live
in the 50 largest metropolitan areas and so arguably
many people will survive at least the initial impact of
a nuclear war, though it had been estimated that even
a “small” nuclear war involving detonation of 100
not too large warheads could have devastating global
consequences.

P
This chapter will rely on the notion of NP complete-
ness, as well as the view of NP as proof systems. For
a review of this notion, please see this chapter of my
introduction to TCS text.

13.1 APPLICATIONS FOR ZERO KNOWLEDGE PROOFS.

Before we talk about how to achieve zero knowledge, let us discuss
some of its potential applications:

13.1.1 Nuclear disarmament
The United States and Russia have reached a dangerous and expensive
equilibrium where each has about 7000 nuclear warheads, much more
than is needed to decimate each others’ population (and the popu-
lation of much of the rest of the world).2 Having so many weapons
increases the chance of “leakage” of weapons, or of an accidental
launch (which can result in an all out war) through fault in com-
munications or rogue commanders. This also threatens the delicate
balance of the Non-Proliferation Treaty which at its core is a bargain
where non-weapons states agree not to pursue nuclear weapons and
the five nuclear weapon states agree to make progress on nuclear dis-
armament. These huge quantities of nuclear weapons are not only
dangerous, as they increase the chance of a leak or of an individual
failure or rogue commander causing a world catastrophe, but also
extremely expensive to maintain.

For all of these reasons, in 2009, U.S. President Obama called to set
as a long term goal a “world without nuclear weapons” and in 2012
spoke concretely about talking to Russia about reducing “not only
our strategic nuclear warheads, but also tactical weapons and war-
heads in reserve”. On the other side, Russian President Putin has said
already in 2000 that he sees “no obstacles that could hamper future
deep cuts of strategic offensive armaments”. (Though as of 2018, po-
litical winds on both sides have shifted away from disarmament and
more toward armament.)

There are many reasons why progress on nuclear disarmament has
been so slow, and most of them have nothing to do with zero knowl-
edge or any other piece of technology. But there are some technical
hurdles as well. One of those hurdles is that for the U.S. and Russia to
go beyond restricting the number of deployed weapons to significantly
reducing the stockpiles, they need to find a way for one country to ver-
ifiably prove that it has dismantled warheads. As mentioned in my
work with Glaser and Goldston (see also this page), a key stumbling
block is that the design of a nuclear warhead is of course highly clas-

https://www.currentresults.com/Weather-Extremes/US/largest-cities-list.php
http://onlinelibrary.wiley.com/doi/10.1002/2013EF000205/full
http://onlinelibrary.wiley.com/doi/10.1002/2013EF000205/full
https://introtcs.org/public/lec_13_Cook_Levin.html
https://introtcs.org/public/lec_13_Cook_Levin.html
https://www.armscontrol.org/factsheets/Nuclearweaponswhohaswhat
https://en.wikipedia.org/wiki/Treaty_on_the_Non-Proliferation_of_Nuclear_Weapons
http://www.nature.com/nature/journal/v510/n7506/full/nature13457.html
http://nuclearfutures.princeton.edu/warhead-verification/

zero knowledge proofs 273

3 As we’ll see, technically what Alice needs to do
in such a scenario is use a zero knowledge proof of
knowledge of a solution for 𝑃 .

sified and about the last thing in the world that the U.S. would like to
share with Russia and vice versa. So, how can the U.S. convince the
Russian that it has destroyed a warhead, when it cannot let Russian
experts anywhere near it?

13.1.2 Voting
Electronic voting has been of great interest for many reasons. One
potential advantage is that it could allow completely transparent vote
counting, where every citizen could verify that the votes were counted
correctly. For example, Chaum suggested an approach to do so by
publishing an encryption of every vote and then having the central
authority prove that the final outcome corresponds to the counts of
all the plaintexts. But of course to maintain voter privacy, we need to
prove this without actually revealing those plaintexts. Can we do so?

13.1.3 More applications
I chose these two examples above precisely because they are hardly
the first that come to mind when thinking about zero knowledge.
Zero knowledge has been used for many cryptographic applications.
One such application (originating from work of Fiat and Shamir) is
the use for identification protocols. Here Alice knows a solution 𝑥 to a
puzzle 𝑃 , and proves her identity to Bob by, for example, providing an
encryption 𝑐 of 𝑥 and proving in zero knowledge that 𝑐 is indeed an
encryption of a solution for 𝑃 .3 Bob can verify the proof, but because
it is zero knowledge, learns nothing about the solution of the puzzle
and will not be able to impersonate Alice. An alternative approach to
such identification protocols is through using digital signatures; this
connection goes both ways and zero knowledge proofs have been used
by Schnorr and others as a basis for signature schemes.

Another very generic application is for “compiling protocols”. As
we’ve seen time and again, it is often much easier to handle passive
adversaries than active ones. (For example, it’s much easier to get CPA
security against the eavesdropping Eve than CCA security against
the person-in-the-middle Mallory.) Thus it would be wonderful if
we could “compile” a protocol that is secure with respect to passive
attacks into one that is secure with respect to active ones. As was
first shown by Goldreich, Micali, and Wigderson, zero knowledge
proofs yield a very general such compiler. The idea is that all parties
prove in zero knowledge that they follow the protocol’s specifications.
Normally, such proofs might require the parties to reveal their secret
inputs, hence violating security, but zero knowledge precisely guar-
antees that we can verify correct behaviour without access to these
inputs.

274 an intensive introduction to cryptography

4 Integers can be coded as sets in various ways. For
example, one can encode 0 as ∅ and if 𝑁 is the set
encoding 𝑛, we can encode 𝑛 + 1 using the 𝑛 + 1-
element set {𝑁} ∪𝑁 .

13.2 DEFINING AND CONSTRUCTING ZERO KNOWLEDGE PROOFS

So, zero knowledge proofs are wonderful objects, but how do we get
them? In fact, we haven’t answered the even more basic question of
how do we define zero knowledge? We have to start by the most basic
task of defining what we mean by a proof.

A proof system can be thought of as an algorithm 𝑉 (for “verifier”)
that takes as input a statement which is some string 𝑥 and another
string 𝜋 known as the proof and outputs 1 if and only if 𝜋 is a valid
proof that the statement 𝑥 is correct. For example:

• In Euclidean geometry, statements are geometric facts such as “in any
triangle the degrees sum to 180 degrees” and the proofs are step by
step derivations of the statements from the five basic postulates.

• In Zermelo-Fraenkel + Axiom of Choice (ZFC) a statement is some
purported fact about sets (e.g., the Riemann Hypothesis4), and a
proof is a step by step derivation of it from the axioms.

• We can define many other “theories”. For example, a theory where
the statements are pairs (𝑥,𝑚) such that 𝑥 is a quadratic residue
modulo 𝑚 and a proof for 𝑥 is the number 𝑠 such that 𝑥 = 𝑠2
(mod 𝑚), or a theory where the theorems are Hamiltonian graphs 𝐺
(graphs on 𝑛 vertices that contain an 𝑛-long cycle) and the proofs
are the description of the cycle.

All these proof systems have the property that the verifying algo-
rithm 𝑉 is efficient. Indeed, that’s the whole point of a proof 𝜋- it’s a
sequence of symbols that makes it easy to verify that the statement is
true.

To achieve the notion of zero knowledge proofs, Goldwasser and
Micali had to consider a generalization of proofs from static sequences
of symbols to interactive probabilistic protocols between a prover and
a verifier. Let’s start with an informal example. The vast majority of
humans have three types of cone cells in their eyes. The reason why
we perceive the sky as blue (see also this), despite its color being quite
a different spectrum than the blue of the rainbow, is that the projection
of the sky’s color to our cones is closest to the projection of blue. It has
been suggested that a tiny fraction of the human population might
have four functioning cones (in fact, only women, as it would require
two X chromosomes and a certain mutation). How would a person
prove to another that she is a in fact such a tetrachromat?

Proof of tetrachromacy:
Suppose that Alice is a tetrachromat and can dis-
tinguish between the colors of two pieces of plastic
that would be identical to a trichromat. She wants to

https://en.wikipedia.org/wiki/Euclidean_geometry
https://en.wikipedia.org/wiki/Zermelo%E2%80%93Fraenkel_set_theory
http://www.patarnott.com/atms749/pdf/blueSkyHumanResponse.pdf
https://www.forbes.com/sites/briankoberlein/2017/01/11/earths-skies-are-violet-we-just-see-them-as-blue/#33aaaf0f735f
https://en.wikipedia.org/wiki/Tetrachromacy

zero knowledge proofs 275

prove to a trichromat Bob that the two pieces are not
identical. She can do this as follows:
Alice and Bob will repeat the following experi-
ment 𝑛 times: Alice turns her back and Bob tosses
a coin and with probability 1/2 leaves the pieces
as they are, and with probability 1/2 switches the
right piece with the left piece. Alice needs to guess
whether Bob switched the pieces or not.
If Alice is successful in all of the 𝑛 repetitions then
Bob will have 1 − 2−𝑛 confidence that the pieces are
truly different.

A similar “proof” inspired the influential notion of hypothesis test-
ing in statistics. Dr. Muriel Bristol said that she prefers the taste of
tea when the milk is put first into the cup and tea later, rather than
vice versa. The statistician Ronald Fisher did not believe her. William
Roach (like Bristol, a chemist, and her future husband) proposed a
probabilistic test, whereby eight cups would be poured for Bristol,
each randomly chosen to either be “milk first” or “tea first”. Bristol
correctly identified all 8 cups. Pondering about this experiment, and
the level of confidence that it enabled to reject the “null hypothesis”
that Bristol simply guessed randomly led to Fisher’s development of
hypothesis testing and the now ubiquitous “𝑝 values”.

We now consider a more “mathematical” example along simi-
lar lines. Recall that if 𝑥 and 𝑚 are numbers then we say that 𝑥 is
a quadratic residue modulo 𝑚 if there is some 𝑠 such that 𝑥 = 𝑠2
(mod 𝑚). Let us define the function NQR(𝑚, 𝑥) to output 1 if and only
if 𝑥 ≠ 𝑠2 (mod 𝑚) for every 𝑠 ∈ {0,… ,𝑚 − 1}. There is a very simple
way to prove statements of the form “NQR(𝑚, 𝑥) = 0”: just give out
𝑠. However, here is an interactive proof system to prove statements of
the form “NQR(𝑚, 𝑥) = 1”:
• We have two parties: Alice and Bob. The common input is (𝑚, 𝑥)

and Alice wants to convince Bob that NQR(𝑚, 𝑥) = 1. (That is, that
𝑥 is not a quadratic residue modulo 𝑚).

• We assume that Alice can compute NQR(𝑚,𝑤) for every 𝑤 ∈
{0,… ,𝑚 − 1} but Bob is polynomial time.

• The protocol will work as follows:

1. Bob will pick some random 𝑠 ∈ ℤ∗
𝑚 (e.g., by picking a random

number in {1,… ,𝑚 − 1} and discard it if it has nontrivial g.c.d.
with 𝑚) and toss a coin 𝑏 ∈ {0, 1}. If 𝑏 = 0 then Bob will send 𝑠2
(mod 𝑚) to Alice and otherwise he will send 𝑥𝑠2 (mod 𝑚) to Alice.

2. Alice will use her ability to compute NQR(𝑚, ⋅) to respond with
𝑏′ = 0 if Bob sent a quadratic residue and with 𝑏′ = 1 otherwise.

https://www.sciencehistory.org/distillations/ronald-fisher-a-bad-cup-of-tea-and-the-birth-of-modern-statistics

276 an intensive introduction to cryptography

3. Bob accepts the proof if 𝑏 = 𝑏′.

To see that Bob will indeed accept the proof, note that if 𝑥 is a non-
residue then 𝑥𝑠2 will have to be a non-residue as well (since if it had
a root 𝑠′ then 𝑠′𝑠 would be a root of 𝑥𝑠2). Hence it will always be the
case that 𝑏′ = 𝑏.

Moreover, if 𝑥 was a quadratic residue of the form 𝑥 = 𝑠′2 (mod 𝑚)
for some 𝑠′, then 𝑥𝑠2 = (𝑠′𝑠)2 is simply a random quadratic residue,
which means that in this case Bob’s message is distributed the same
regardless of whether 𝑏 = 0 or 𝑏 = 1, and no matter what she does, Al-
ice has probability at most 1/2 of guessing 𝑏. Hence if Alice is always
successful than after 𝑛 repetitions Bob would have 1 − 2−𝑛 confidence
that 𝑥 is indeed a non-residue modulo 𝑚.

P
Please stop and make sure you see the similarities be-
tween this protocol and the one for demonstrating that
the two pieces of plastic do not have identical colors.

Let us now make the formal definition:

Definition 13.1 — Proof systems. Let 𝑓 ∶ {0, 1}∗ → {0, 1} be some
function. A probabilistic proof for 𝑓 (i.e., a proof for statements of the
form “𝑓(𝑥) = 1”) is a pair of interactive algorithms (𝑃 , 𝑉) such that
𝑉 runs in polynomial time and they satisfy:

• Completeness: If 𝑓(𝑥) = 1 then on input 𝑥, if 𝑃 and 𝑉 are given
input 𝑥 and interact, then at the end of the interaction 𝑉 will
output Accept with probability at least 0.9.

• Soundness: If If 𝑓(𝑥) = 0 then for any arbitrary (efficient or
non efficient) algorithm 𝑃 ∗, if 𝑃 ∗ and 𝑉 are given input 𝑥 and
interact then at the end 𝑉 will output Accept with probability at
most 0.1.

R
Remark 13.2 — Functions vs languages. In many texts
proof systems are defined with respect to languages
as opposed to functions. That is, instead of talking
about a function 𝑓 ∶ {0, 1}∗ → {0, 1} we talk about
a language 𝐿 ⊆ {0, 1}∗. These two viewpoints are
completely equivalent via the mapping 𝑓 ⟷ 𝐿 where
𝐿 = {𝑥 |𝑓(𝑥) = 1}.

Note that we don’t necessarily require the prover to be efficient
(and indeed, in some cases it might not be). On the other hand, our

zero knowledge proofs 277

5 People have considered the notion of zero knowl-
edge systems where soundness holds only with re-
spect to efficient provers; these are known as argument
systems.

soundness condition holds even if the prover uses a non efficient
strategy.5 We say that a proof system has an efficient prover if there
is an NP-type proof system Π for 𝐿 (that is some efficient algorithm
Π such that there exists 𝜋 with Π(𝑥, 𝜋) = 1 iff 𝑥 ∈ 𝐿 and such that
Π(𝑥, 𝜋) = 1 implies that |𝜋| ≤ 𝑝𝑜𝑙𝑦(|𝑥|), such that the strategy for 𝑃
can be implemented efficiently given any static proof 𝜋 for 𝑥 in this
system.

R
Remark 13.3 — Notation for strategies. Up until now,
we always considered cryptographic protocols where
Alice and Bob trusted one another, but were worried
about some adversary controlling the channel between
them. Now we are in a somewhat more “suspicious”
setting where the parties do not fully trust one an-
other. In such protocols there is always a “prescribed”
or honest strategy that a particular party should fol-
low, but we generally don’t want the other parties’
security to rely on someone else’s good intention, and
hence analyze also the case where a party uses an arbi-
trary malicious strategy. We sometimes also consider
the honest but curious case where the adversary is
passive and only collects information, but does not
deviate from the prescribed strategy.
Protocols typically only guarantee security for party A
when it behaves honestly - a party can always chose to
violate its own security and there is not much we can
(or should?) do about it.

13.3 DEFINING ZERO KNOWLEDGE

So far we merely defined the notion of an interactive proof system,
but we need to define what it means for a proof to be zero knowledge.
Before we attempt a definition, let us consider an example. Going back
to the notion of quadratic residuosity, suppose that 𝑥 and 𝑚 are public
and Alice knows 𝑠 such that 𝑥 = 𝑠2 (mod 𝑚). She wants to convince
Bob that this is the case. However she prefers not to reveal 𝑠. Can she
convince Bob that such an 𝑠 exists without revealing any information
about it? Here is a way to do so:

Protocol ZK-QR: Public input for Alice and Bob: 𝑥,𝑚; Alice’s private
input is 𝑠 such that 𝑥 = 𝑠2 (mod 𝑚).

1. Alice will pick a random 𝑠′ and send to Bob 𝑥′ = 𝑥𝑠′2 (mod 𝑚).

2. Bob will pick a random bit 𝑏 ∈ {0, 1} and send 𝑏 to Alice.

3. If 𝑏 = 0 then Alice reveals 𝑠𝑠′, hence giving out a root for 𝑥′; if 𝑏 = 1
then Alice reveals 𝑠′, hence showing a root for 𝑥′𝑥−1.

278 an intensive introduction to cryptography

4. Bob checks that the value 𝑠″ revealed by Alice is indeed a root of
𝑥′𝑥−𝑏, if so then it “accepts” the proof.

If 𝑥 was not a quadratic residue then no matter how 𝑥′ was chosen,
either 𝑥′ or 𝑥′𝑥−1 is not a residue and hence Bob will reject the proof
with probability at least 1/2. By repeating this 𝑛 times, we can reduce
the probability of Bob accepting the proof of a non residue to 2−𝑛.

On the other hand, we claim that we didn’t really reveal anything
about 𝑠. Indeed, if Bob chooses 𝑏 = 0, then the two messages (𝑥′, 𝑠𝑠′)
he sees can be thought of as a random quadratic residue 𝑥′ and its
root. If Bob chooses 𝑏 = 1 then after dividing by 𝑥 (which he could
have done by himself) he still gets a random residue 𝑥″ and its root 𝑠′.
In both cases, the distribution of these two messages is completely in-
dependent of 𝑠, and hence intuitively yields no additional information
about it beyond whatever Bob knew before.

To define zero knowledge mathematically we follow the following
intuition:

A proof system is zero knowledge if the verifier did not
learn anything after the interaction that he could not have
learned on his own.

Despite the name “zero knowledge”, we do not claim that the ver-
ifier does not know anything about the private input 𝑥. For example,
if 1𝑚 = 𝑝 ⋅ 𝑞 for two primes 𝑝, 𝑞, then each 𝑠 ∈ ℤ∗

𝑚 has at most four
square roots, and if the verifier could compute square roots then they
can narrow 𝑥 down to these four possibilities. However, the point is
that this is knowledge that the verifier already even before the interac-
tion with the prover, and so participating in the proof resulted in zero
additional knowledge.

Here is how we formally define zero knowledge:

Definition 13.4 — Zero knowledge proofs. A proof system (𝑃 , 𝑉) for 𝑓 is
zero knowledge if for every efficient verifier strategy 𝑉 ∗ there exists
an efficient probabilistic algorithm 𝑆∗ (known as the simulator)
such that for every 𝑥 s.t. 𝑓(𝑥) = 1, the following random variables
are computationally indistinguishable:

• The output of 𝑉 ∗ after interacting with 𝑃 on input 𝑥.

• The output of 𝑆∗ on input 𝑥.

That is, we can show the verifier does not gain anything from the
interaction, because no matter what algorithm 𝑉 ∗ he uses, whatever
he learned as a result of interacting with the prover, he could have just

zero knowledge proofs 279

as equally learned by simply running the standalone algorithm 𝑆∗ on
the same input.

R
Remark 13.5 — The simulation paradigm. The natural
way to define security is to say that a system is secure
if some “laundry list” of bad outcomes X,Y,Z can’t
happen. The definition of zero knowledge is differ-
ent. Rather than giving a list of the events that are
not allowed to occur, it gives a maximalist simulation
condition.
At its heart the definition of zero knowledge says the
following: clearly, we cannot prevent the verifier from
running an efficient algorithm 𝑆∗ on the public input,
but we want to ensure that this is the most he can
learn from the interaction.
This simulation paradigm has become the standard
way to define security of a great many cryptographic
applications. That is, we bound what an adversary
Eve can learn by postulating some hypothetical ad-
versary Lilith that is under much harsher conditions
(e.g., does not get to interact with the prover) and
ensuring that Eve cannot learn anything that Lilith
couldn’t have learned either. This has an advantage of
being the most conservative definition possible, and
also phrasing security in positive terms- there exists a
simulation - as opposed to the typical negative terms
- events X,Y,Z can’t happen. Since it’s often easier for
us to think of positive terms, paradoxically sometimes
this stronger security condition is easier to prove. Zero
knowledge is in some sense the simplest setting of the
simulation paradigm and we’ll see it time and again in
dealing with more advanced notions.

The definition of zero knowledge is confusing since intuitively if
the verifier gained confidence that the statement is true than surely he
must have learned something. This is another one of those cases where
cryptography is counterintuitive. To understand it better, it is worth-
while to see the formal proof that the protocol above for quadratic
residuosity is zero knowledge:

Theorem 13.6 — Zero knowledge for quadratic residuosity. Protocol ZK-QR
above is a zero knowledge protocol.

Proof. Let 𝑉 ∗ be an arbitrary efficient strategy for Bob. Since Bob only
sends a single bit, we can think of this strategy as composed of two
functions:

• 𝑉1(𝑥,𝑚, 𝑥′) outputs the bit 𝑏 that Bob chooses on input 𝑥,𝑚 and
after Alice’s first message is 𝑥′.

280 an intensive introduction to cryptography

• 𝑉2(𝑥,𝑚, 𝑥′, 𝑠″) is whatever Bob outputs after seeing Alice’s re-
sponse 𝑠″ to the bit 𝑏.

Both 𝑉1 and 𝑉2 are efficiently computable. We now need to come
up with an efficient simulator 𝑆∗ that is a standalone algorithm that on
input 𝑥,𝑚 will output a distribution indistinguishable from the output
𝑉 ∗.

The simulator 𝑆∗ will work as follows:

1. Pick 𝑏′ ←𝑅 {0, 1}.

2. Pick 𝑠″ at random in ℤ∗
𝑚. If 𝑏 = 0 then let 𝑥′ = 𝑠″2 (mod 𝑚).

Otherwise output 𝑥′ = 𝑥𝑠″2 (mod 𝑚).

3. Let 𝑏 = 𝑉1(𝑥,𝑚, 𝑥′). If 𝑏 ≠ 𝑏′ then go back to step 1.

4. Output 𝑉2(𝑥,𝑚, 𝑥′, 𝑠″).

The correctness of the simulator follows from the following claims
(all of which assume that 𝑥 is actually a quadratic residue, since oth-
erwise we don’t need to make any guarantees and in any case Alice’s
behaviour is not well defined):

Claim 1: The distribution of 𝑥′ computed by 𝑆∗ is identical to the
distribution of 𝑥′ chosen by Alice.

Claim 2: With probability at least 1/2, 𝑏′ = 𝑏.
Claim 3: Conditioned on 𝑏 = 𝑏′ and the value 𝑥′ computed in

step 2, the value 𝑠″ computed by 𝑆∗ is identical to the value that Alice
sends when her first message is 𝑥′ and Bob’s response is 𝑏.

Together these three claims imply that in expectation 𝑆∗ only in-
vokes 𝑉1 and 𝑉2 a constant number of times (since every time it goes
back to step 1 with probability at most 1/2). They also imply that the
output of 𝑆∗ is in fact identical to the output of 𝑉 ∗ in a true interaction
with Alice. Thus, we only need to prove the claims, which is actually
quite easy:

Proof of Claim 1: In both cases, 𝑥′ is a random quadratic residue.
QED (Claim 1)

Proof of Claim 2: This is a corollary of Claim 1; since the distribu-
tion of 𝑥′ is identical to the distribution chosen by Alice, in particular
𝑥′ gives out no information about the choice of 𝑏′. QED (Claim 2)

Proof of Claim 3: This follows from a direct calculation. The value
𝑠″ sent by Alice is a square root of 𝑥′ if 𝑏 = 0 and of 𝑥′𝑥−1 if 𝑥 = 1. But
this is identical to what happens for 𝑆∗ if 𝑏 = 𝑏′. QED (Claim 3)

Together these complete the proof of the theorem.
■

Theorem 13.6 is interesting but not yet good enough to guarantee
security in practice. After all, the protocol that we really need to show

zero knowledge proofs 281

is zero knowledge is the one where we repeat this procedure 𝑛 times.
This is a general theorem that if a protocol is zero knowledge then
repeating it polynomially many times one after the other (so called
“sequential repetition”) preserves zero knowledge. You can think of
this as cryptography’s version of the equality “0 + 0 = 0”, but as usual,
intuitive things are not always correct and so this theorem does re-
quire (a not super trivial) proof. It is a good exercise to try to prove it
on your own. There are known ways to achieve zero knowledge with
negligible soundness error and a constant number of communication
rounds, see Goldreich’s book (Vol 1, Sec 4.9).

13.4 ZERO KNOWLEDGE PROOF FOR HAMILTONICITY.

We now show a proof for another language.
Suppose that Alice and Bob know an 𝑛-vertex graph 𝐺 and Alice

knows a Hamiltonian cycle 𝐶 in this graph (i.e. a length 𝑛 simple cycle
- one that traverses all vertices exactly once). Here is how Alice can
prove that such a cycle exists without revealing any information about
it.

Protocol ZK-Ham:

0. Common input: graph 𝐻 (in the form of an 𝑛 × 𝑛 adjacency ma-
trix). Alice’s private input: a Hamiltonian cycle 𝐶 = (𝐶1,… ,𝐶𝑛)
which are distinct vertices such that (𝐶ℓ, 𝐶ℓ+1) is an edge in 𝐻 for
all ℓ ∈ {1,… , 𝑛 − 1} and (𝐶𝑛, 𝐶1) is an edge as well. Below we
assume that 𝐺 ∶ {0, 1}𝑛 → {0, 1}3𝑛 is a pseudorandom generator.

1. Bob chooses a random string 𝑧 ∈ {0, 1}3𝑛

2. Alice chooses a random permutation 𝜋 on {1,… , 𝑛} and let 𝑀
be the 𝜋-permuted adjacency matrix of 𝐻 (i.e., 𝑀𝜋(𝑖),𝜋(𝑗) = 1 iff
(𝑖, 𝑗) is an edge in 𝐻). For every 𝑖, 𝑗, Alice chooses a random string
𝑥𝑖,𝑗 ∈ {0, 1}𝑛 and let 𝑦𝑖,𝑗 = 𝐺(𝑥𝑖,𝑗) ⊕ 𝑀𝑖,𝑗𝑧. She sends {𝑦𝑖,𝑗}𝑖,𝑗∈[𝑛] to
Bob.

3. Bob chooses a bit 𝑏 ∈ {0, 1}.

4. If 𝑏 = 0 then Alice sends out 𝜋 and the strings {𝑥𝑖,𝑗} for all 𝑖, 𝑗; if
𝑏 = 1 then Alice sends out the 𝑛 strings 𝑥𝜋(𝐶1),𝜋(𝐶2),… , 𝑥𝜋(𝐶𝑛),𝜋(𝐶1)
together with their indices.

5. If 𝑏 = 0 then Bob computes 𝑀 to be the 𝜋-permuted adjacency
matrix of 𝐻 and verifies that all the 𝑦𝑖,𝑗’s were computed from the
𝑥𝑖,𝑗’s appropriately. If so then Bob accepts the proof, and otherwise
it rejects it. If 𝑏 = 1 then Bob verifies that the indices of the strings
{𝑥𝑖,𝑗} sent by Alice form a cycle and that indeed 𝑦𝑖,𝑗 = 𝐺(𝑥𝑖,𝑗) ⊕ 𝑧

282 an intensive introduction to cryptography

6 Goldreich, Micali and Wigderson were the first to
come up with a zero knowledge proof for an NP
complete problem, though the Hamiltoncity protocol
here is from a later work by Blum. We use Naor’s
commitment scheme.

for every string 𝑥𝑖,𝑗 that was sent by Alice. If so then Bob accepts
the proof and otherwise he rejects it.

Theorem 13.7 — Zero Knowledge proof for Hamiltonian Cycle. Protocol
ZK-Ham is a zero knowledge proof system for the language of
Hamiltonian graphs. 6

Proof. We need to prove completeness, soundness, and zero knowl-
edge.

Completeness can be easily verified, and so we leave this to the
reader.

For soundness, we recall that (as we’ve seen before) with ex-
tremely high probability the sets 𝑆0 = {𝐺(𝑥) ∶ 𝑥 ∈ {0, 1}𝑛} and
𝑆1 = {𝐺(𝑥) ⊕ 𝑧 ∶ 𝑥 ∈ {0, 1}𝑛} will be disjoint (this probability is
over the choice of 𝑧 that is done by the verifier). Now, assuming this is
the case, given the messages {𝑦𝑖,𝑗} sent by the prover in the first step,
define an 𝑛 × 𝑛 matrix 𝑀 ′ with entries in {0, 1, ?} as follows: 𝑀 ′

𝑖,𝑗 = 0
if 𝑦𝑖,𝑗 ∈ 𝑆0 , 𝑀 ′

𝑖,𝑗 = 1 if 𝑦𝑖,𝑗 ∈ 𝑆1 and 𝑀 ′
𝑖,𝑗 = ? otherwise.

We split into two cases. The first case is that there exists some per-
mutation 𝜋 such that (i) 𝑀 ′ is a 𝜋-permuted version of the input
graph 𝐻 and (ii) 𝑀 ′ contains a Hamiltonian cycle. Clearly in this case
𝐻 contains a Hamiltonian cycle as well, and hence we don’t need to
consider it when analyzing soundness. In the other case we claim that
with probability at least 1/2 the verifier will reject the proof. Indeed, if
(i) is violated then the proof will be rejected if Bob chooses 𝑏 = 0 and
if (ii) is violated then the proof will be rejected if Bob chooses 𝑏 = 1.

We now turn to showing zero knowledge. For this we need to build
a simulator 𝑆∗ for an arbitrary efficient strategy 𝑉 ∗ of Bob. Recall that
𝑆∗ gets as input the graph 𝐻 (but not the Hamiltonian cycle 𝐶) and
needs to produce an output that is indistinguishable from the output
of 𝑉 ∗. It will do so as follows:

0. Pick 𝑏′ ∈ {0, 1}.

1. Let 𝑧 ∈ {0, 1}3𝑛 be the first message computed by 𝑉 ∗ on input 𝐻 .

2. If 𝑏′ = 0 then 𝑆∗ computes the second message as Alice does:
chooses a random permutation 𝜋 on {1,… , 𝑛} and let 𝑀 be the
𝜋-permuted adjacency matrix of 𝐻 (i.e., 𝑀𝜋(𝑖),𝜋(𝑗) = 1 iff (𝑖, 𝑗) is
an edge in 𝐻). In contrast, if 𝑏′ = 1 then 𝑆∗ lets 𝑀 be the all 1s
matrix. For every 𝑖, 𝑗, 𝑆∗ chooses a random string 𝑥𝑖,𝑗 ∈ {0, 1}𝑛
and let 𝑦𝑖,𝑗 = 𝐺(𝑥𝑖,𝑗) ⊕ 𝑀𝑖,𝑗𝑧, where 𝐺 ∶ {0, 1}𝑛 → {0, 1}3𝑛 is a
pseudorandom generator.

3. Let 𝑏 be the output of 𝑉 ∗ when given the input 𝐻 and the first
message {𝑦𝑖,𝑗} computed as above. If 𝑏 ≠ 𝑏′ then go back to step 0.

zero knowledge proofs 283

4. We compute the fourth message of the protocol similarly to how
Alice does it: if 𝑏 = 0 then it consists of 𝜋 and the strings {𝑥𝑖,𝑗} for
all 𝑖, 𝑗; if 𝑏 = 1 then we pick a random length-𝑛 cycle 𝐶′ and the
message consists of the 𝑛 strings 𝑥𝐶′

1,𝐶′
2
,… , 𝑥𝐶′𝑛,𝐶′

1
together with

their indices.

5. Output whatever 𝑉 ∗ outputs when given the prior message.

We prove the output of the simulator is indistinguishable from the
output of 𝑉 ∗ in an actual interaction by the following claims:

Claim 1: The message {𝑦𝑖,𝑗} computed by 𝑆∗ is computationally
indistinguishable from the first message computed by Alice.

Claim 2: The probability that 𝑏 = 𝑏′ is at least 1/3.
Claim 3: The fourth message computed by 𝑆∗ is computationally

indistinguishable from the fourth message computed by Alice.
We will simply sketch here the proofs (see Goldreich’s book for

example for full proofs):
For Claim 1, note that if 𝑏′ = 0 then the message is identical to the

way Alice computes it. If 𝑏′ = 1 then the difference is that 𝑆∗ computes
some strings 𝑦𝑖,𝑗 of the form 𝐺(𝑥𝑖,𝑗) + 𝑧 where Alice would compute
the corresponding strings as 𝐺(𝑥𝑖,𝑗) this is indistinguishable because
𝐺 is a pseudorandom generator (and the distribution 𝑈3𝑛 ⊕ 𝑧 is the
same as 𝑈3𝑛).

Claim 2 is a corollary of Claim 1. If 𝑉 ∗ managed to pick a message
𝑏 such that Pr[𝑏 = 𝑏′] < 1/2 − 𝑛𝑒𝑔𝑙(𝑛) then in particular it could
distinguish between the first message of Alice (that is computed inde-
pendently of 𝑏′ and hence contains no information about it) from the
first message of 𝑉 ∗.

For Claim 3, note that again if 𝑏 = 0 then the message is computed
in a way identical to what Alice does. If 𝑏 = 1 then this message is also
computed in a way identical to Alice, since it does not matter if instead
of picking 𝐶′ at random, we picked a random permutation 𝜋 and let
𝐶′ be the image of the Hamiltonian cycle under this permutation.

This completes the proof of the theorem.
■

13.4.1 Why is this interesting?
The reason that a protocol for Hamiltonicity is more interesting than
a protocol for quadratic residuosity is that Hamiltonicity is an NP-
complete problem. Specifically recall the following:

• A function 𝐹 ∶ {0, 1}∗ → {0, 1} is in NP if there exists a polynomial-
time algorithm 𝑉𝐹 and some integer 𝑐 such that for every 𝑥 ∈
{0, 1}∗, 𝐹(𝑥) = 1 iff there exists 𝑦 ∈ {0, 1}|𝑥|𝑐 such that 𝑉𝐹 (𝑥, 𝑦) = 1.
Many functions of interest in all areas of math, science, engineering,
and more are in the class NP.

284 an intensive introduction to cryptography

• Let HAM ∶ {0, 1}∗ → {0, 1} be the function that maps a graph 𝐺
to 1 if and only if 𝐺 contains a Hamiltonian cycle. Then HAM ∈
NP. Indeed, this is demonstrated by the function 𝑉𝐻𝐴𝑀 such that
𝑉𝐻𝐴𝑀(𝐺,𝐶) = 1 iff 𝐶 is a Hamiltonian cycle in the graph 𝐺.

• The function HAM is NP-complete. Specifically for every
𝐹, 𝑉𝐹 as above, there is are efficiently computable functions
𝑟, 𝑟𝐸𝑛𝑐𝑜𝑑𝑒, 𝑟𝐷𝑒𝑐𝑜𝑑𝑒 that satisfy the following:

a. (Completeness of reduction.) For every 𝑥, 𝑦 such that 𝑉𝐹 (𝑥, 𝑦) =
1, 𝑉𝐻𝐴𝑀(𝑟(𝑥), 𝑟𝐸𝑛𝑐𝑜𝑑𝑒(𝑥, 𝑦)) = 1. In particular this means that for
every 𝑥 such that 𝐹(𝑥) = 1, HAM(𝑟(𝑥)) = 1. (Can you see why?)

b. (Soundness of reduction.) For every 𝑥 ∈ {0, 1}∗, if there exists
𝐶 such that 𝑉𝐻𝐴𝑀(𝑟(𝑥), 𝐶) = 1 then 𝑉𝐹 (𝑥, 𝑟𝐷𝑒𝑐𝑜𝑑𝑒(𝑥, 𝐶)) = 1. In
particular this means that for every 𝑥 such that HAM(𝑟(𝑥)) = 1,
𝐹(𝑥) = 1. (Can you see why?)

Using the reduction above, we can transform the zero-knowledge
proof for Hamiltonicity into a zero knowledge proof for every 𝐹 ∈ NP.
Specifically, to prove that 𝐹(𝑥) = 1, the verifier and prover will use the
following system (see also Fig. 13.1).

1. Public input: 𝑥. Prover’s private input: 𝑦 such that 𝑉𝐹 (𝑥, 𝑦) = 1.

2. Verifier and prover will compute 𝐺 = 𝑟(𝑥). Prover will compute
𝐶 = 𝑟𝐸𝑛𝑐𝑜𝑑𝑒(𝑥, 𝑦).

3. Verifier and prove run the Hamiltonicity zero knowledge protocol,
with public input 𝐺 and prover’s private input 𝐶. The verifier’s
output is the output in this protocol.

Figure 13.1: Using a zero knowledge protocol for
Hamiltonicity we can obtain a zero knowledge pro-
tocol for any language 𝐿 in NP. For example, if the
public input is a SAT formula 𝜑 and the Prover’s se-
cret input is a satisfying assignment 𝑥 for 𝜑 then the
verifier can run the reduction on 𝜑 to obtain a graph
𝐻 and the prover can run the same reduction to ob-
tain from 𝑥 a Hamiltonian cycle 𝐶 in 𝐻. They can
then run the ZK-Ham protocol to prove that indeed
𝐻 is Hamiltonian (and hence the original formula
was satisfiable) without revealing any information the
verifier could not have obtain on his own.

zero knowledge proofs 285

P
Please make sure that you understand why this
will give a zero knowledge proof for 𝐹 , and in par-
ticular satisfy the completeness, soundness, and
zero-knowledge properties.
Note that while the NP completeness of Hamiltonicity
(and the Cook-Levin Theorem in general) is usually
perceived as a negative result (showing evidence for
the non-existence of an algorithm), in this context we
use it to obtain a positive result (zero knowledge proof
systems for many interesting functions).

This means that for every other NP language 𝐿, we can use the
reduction from 𝐿 to Hamiltonicity combined with protocol ZK-Ham
to give a zero knowledge proof system for 𝐿. In particular this means
that we can have zero knowledge proofs for the following languages:

• The language of numbers 𝑚 such that there exists a prime 𝑝 divid-
ing 𝑚 whose remainder modulo 10 is 7.

• The language of tuples 𝑋, 𝑒, 𝑐1,… , 𝑐𝑛 such that 𝑐𝑖 is an encryption
of a number 𝑥𝑖 with ∑𝑥𝑖 = 𝑋. (This is essentially what we needed
in the voting example above).

• For every efficient function 𝐺, the language of pairs 𝑥, 𝑦 such that
there exists some input 𝑟 satisfying 𝑦 = 𝐺(𝑥‖𝑟). (This is what we
often need in the “protocol compiling” applications to show that a
particular output was produced by the correct program 𝐺 on public
input 𝑥 and private input 𝑟.)

13.5 PARALLEL REPETITION AND TURNING ZERO KNOWLEDGE
PROOFS TO SIGNATURES.

While we talked about amplifying zero knowledge proofs by running
them 𝑛 times one after the other, one could also imagine running the
𝑛 copies in parallel. It is not trivial that we get the same benefit of re-
ducing the error to 2−𝑛 but it turns out that we do in the cases we are
interested in here. Unfortunately, zero knowledge is not necessarily
preserved. It’s an important open problem whether zero knowledge is
preserved for the ZK-Ham protocol mentioned above.

However, Fiat and Shamir showed that in protocols (such as the
ones we showed here) where the verifier only sends random bits, then
if we replaced this verifier by a random function, then both soundness
and zero knowledge are preserved. This suggests a non-interactive
version of these protocols in the random oracle model, and this is
indeed widely used. Schnorr designed signatures based on this non
interactive version.

286 an intensive introduction to cryptography

13.5.1 “Bonus features” of zero knowledge
The following properties of zero knowledge systems are used in the
literature. We might cover some in class, but mention them here.
These are covered in Chapter 20 of Boneh-Shoup.

• Proof of knowledge - it can be shown that the proof above of Hamil-
tonicity yields more than soundness. We can “extract” from a
prover startegy that succeeds in convincing the verifier that 𝐺 is
Hamiltonian with probability larger than 1/2 an actual Hamiltonian
cycle. This means that the prover didn’t just convince the verifier
that there exists a Hamiltonian cycle in the graph 𝐺 but also that the
prover “knows” it. This notion is known as a “proof of knowledge”.

• Arguments - if a proof system only satisfies the soundness condi-
tion with respect to polynomial-time provers, then it is called an
argument system.

• Succinct proofs - proofs that 𝐹(𝑥) = 1 where total communication is
a fixed polynomial in 𝑛 independently of the time to verify 𝐹 .

Combining succinct zero-knowledge proofs with the Fiat-Shamir
heuristic for non-interactivity leads to the notion of zero-knowledge
succinct arguments or ZK-SNARG. If these also satisfy a “proof of
knowledge” property then they are called ZK-SNARKs. These have
recently been of great interest for crypto-currencies. See lectures 16-18
in Stanford CS 251, as well as this blog post.

https://eprint.iacr.org/2014/580
https://cs251.stanford.edu/syllabus.html
https://cs251.stanford.edu/syllabus.html
https://z.cash/technology/zksnarks/

