Public key cryptography
Boaz Barak
Disclaimer: The MS-Word version of this text has significant formatting issues compared to the PDF and HTML versions.
[bookmark: public-key-cryptography]Public key cryptography
People have been dreaming about heavier-than-air flight since at least the days of Leonardo Da Vinci (not to mention Icarus from Greek mythology). Jules Verne wrote with rather insightful details about going to the moon in 1865. But, as far as I know, no one had considered the possibility of communicating securely without first exchanging a shared secret key until about 50 years ago. This is surprising given the thousands of years people have been using secret writing! However, in the late 1960’s and early 1970’s, several people started to question this “common wisdom”.
Perhaps the most surprising of these visionaries was an undergraduate student at Berkeley named Ralph Merkle. In the fall of 1974, he wrote a project proposal for his computer security course that while
“it might seem intuitively obvious that if two people have never had the opportunity to prearrange an encryption method, then they will be unable to communicate securely over an insecure channel… I believe it is false”.
Merkle also felt it is important to add “No. I am not joking.”. The project proposal was rejected by his professor as “not good enough”. Merkle later submitted a paper to the communication of the ACM, where he apologized for the lack of references since he was unable to find any mention of the problem in the scientific literature, and the only source where he saw the problem even raised was in a science fiction story. The paper was rejected with the comment that “Experience shows that it is extremely dangerous to transmit key information in the clear.” Merkle showed that one can design a protocol where Alice and Bob can use  invocations of a hash function to exchange a key, but an adversary (in the random oracle model, though he of course didn’t use this name) would need roughly  invocations to break it. He conjectured that it may be possible to obtain such protocols where breaking is exponentially harder than using them but could not think of any concrete way to doing so.
[bookmark: merklefig][image: ../figure/merkle-proposal.png]
Ralph Merkle’s Berkeley CS 244 project proposal for developing public key cryptography
We only found out much later that in the late 1960’s, a few years before Merkle, James Ellis of the British Intelligence agency GCHQ was having similar thoughts. His curiosity was spurred by an old World War II manuscript from Bell labs that suggested the following way that two people could communicate securely over a phone line. Alice would inject noise to the line, Bob would relay his messages, and then Alice would subtract the noise to get the signal. The idea is that an adversary over the line sees only the sum of Alice’s and Bob’s signals and doesn’t know what came from what. This got James Ellis thinking whether it would be possible to achieve something like that digitally. As he later recollected, in 1970 he realized that in principle this should be possible. He could think of an hypothetical black box  that on input a “handle”  and plaintext  would give a “ciphertext” . There would be a secret key  corresponding to  such that feeding  and  to the box would recover . However, Ellis had no idea how to actually instantiate this box. He and others kept giving this question as a puzzle to bright new recruits until one of them, Clifford Cocks, came up in 1973 with a candidate solution loosely based on the factoring problem; in 1974 another GCHQ recruit, Malcolm Williamson, came up with a solution using modular exponentiation.
But among all those thinking of public key cryptography, probably the people who saw the furthest were two researchers at Stanford, Whit Diffie and Martin Hellman. They realized that with the advent of electronic communication, cryptography would find new applications beyond the military domain of spies and submarines. And they understood that in this new world of many users and point to point communication, cryptography would need to scale up. They envisioned an object which we now call “trapdoor permutation” though they called it “one way trapdoor function” or sometimes simply “public key encryption”. This is a collection of permutations  where  is a permutation over (say) , and the map  is efficiently computable but the reverse map  is computationally hard. Yet, there is also some secret key  (i.e., the “trapdoor”) such that using  it is possible to efficiently compute . Their idea was that using such a trapdoor permutation, Alice who knows  would be able to publish  on some public file such that everyone who wants to send her a message  could do so by computing . (While today we know, due to the work of Goldwasser and Micali, that such a deterministic encryption is not a good idea, at the time Diffie and Hellman had amazing intuitions but didn’t really have proper definitions of security.) But they didn’t stop there. They realized that protecting the integrity of communication is no less important than protecting its secrecy. Thus, they imagined that Alice could “run encryption in reverse” in order to certify or sign messages. That is, given some message , Alice would send the value  (for a hash function ) as a way to certify that she endorses , and every person who knows  could verify this by checking that .
At this point, Diffie and Hellman were in a position similar to past physicists, who predicted that a certain particle should exist but had no experimental verification. Luckily they met Ralph Merkle. His ideas about a probabilistic key exchange protocol, together with a suggestion from their Stanford colleague John Gill, inspired them to come up with what today is known as the Diffie-Hellman Key Exchange (unbeknownst to them, a similar protocol was found two years earlier at GCHQ by Malcolm Williamson). They published their paper “New Directions in Cryptography” in 1976, and it is considered to have brought about the birth of modern cryptography. However, they still didn’t find their elusive trapdoor function. This was done the next year by Rivest, Shamir and Adleman who came up with the RSA trapdoor function, which through the framework of Diffie and Hellman yielded not just encryption but also signatures (this was essentially the same function discovered earlier by Clifford Cocks at GCHQ, though as far as I can tell Cocks, Ellis and Williamson did not realize the application to digital signatures). From this point on began a flurry of advances in cryptography which hasn’t really died down till this day.
[bookmark: johngillfig][image: ../figure/john-gill.png]
John T. Gill III. Gill proposed to Diffie and Hellman to use modular exponentiation as a one-way function, which (together with Merkle’s ideas) enabled what’s known today as the Diffie-Hellman Key Exchange protocol.
[bookmark: private-key-crypto-recap]Private key crypto recap
Before we embark on the wonderful journey to public key cryptography, let’s briefly look back and see what we learned about private key cryptography. This material is mostly covered in Chapters 1 to 9 of the Katz Lindell (KL) book and Part I (Chapters 1-9) of the Boneh Shoup (BS) book. Now would be a good time for you to read the corresponding proofs in one or both of these books. It is often helpful to see the same proof presented in a slightly different way. Below is a review of some of the various reductions we saw in class, with pointers to the corresponding sections in the Katz-Lindell (2nd ed) and Boneh-Shoup books. These are also covered in Rosulek’s book.
· Pseudorandom generators (PRG) length extension (from  output PRG to  output PRG): KL 7.4.2, BS 3.4.2
· PRG’s to pseudorandom functions (PRF’s): KL 7.5, BS 4.6
· PRF’s to Chosen Plaintext Attack (CPA) secure encryption: KL 3.5.2, BS 5.5
· PRF’s to secure Message Authentication Codes (MAC’s): KL 4.3, BS 6.3
· MAC’s + CPA secure encryption to chosen ciphertext attack (CCA) secure encryption: BS 4.5.4, BS 9.4
· Pseudorandom permutation (PRP’s) to CPA secure encryption / block cipher modes: KL 3.5.2, KL 3.6.2, BS 4.1, 4.4, 5.4
· Hash function applications: fingerprinting, Merkle trees, passwords: KL 5.6, BS Chapter 8
· Coin tossing over the phone: we saw a construction in class that used a commitment scheme built out of a pseudorandom generator. This is shown in BS 3.12, KL 5.6.5 shows an alternative construction using random oracles.
· PRP’s from PRF’s: we only sketched the construction which can be found in KL 7.6 or BS 4.5
One major point we did not talk about in this course was one way functions. The definition of a one way function is quite simple:
[bookmark: owfdef]
A function  is a one way function if it is efficiently computable and for every  and a  time adversary , the probability over  that  outputs  such that  is negligible.
The “OWF conjecture” is the conjecture that one way functions exist. It turns out to be a necessary and sufficient condition for much of private key cryptography. That is, the following theorem is known (by combining works of many people):
The following are equivalent:
· One way functions exist
· Pseudorandom generators (with non-trivial stretch) exist
· Pseudorandom functions exist
· CPA secure private key encryptions exist
· CCA secure private key encryptions exist
· Message Authentication Codes exist
· Commitment schemes exist
The key result in the proof of this theorem is the result of Hastad, Impagliazzo, Levin and Luby that if one way functions exist then pseudorandom generators exist. If you are interested in finding out more, see Chapter 7 in Vadhan’s pseudorandomness monograph. Sections 7.2-7.4 in the KL book also cover a special case of this theorem for the case that the one way function is a permutation on  for every . This proof has been considerably simplified and quantitatively improved in works of Haitner, Holenstein, Reingold, Vadhan, Wee and Zheng. See this talk of Salil Vadhan for more on this. See also these lecture notes from a Princeton seminar I gave on this topic (though the proof has been simplified since then by the above works).
[bookmark: privkeyattacks]
Another topic we did not discuss in depth is attacks on private key cryptosystems. These attacks often work by “opening the black box” and looking at the internal operation of block ciphers or hash functions. We then assign variables to various internal registers, and look to find collections of inputs that would satisfy some non-trivial relation between those variables. This is a rather vague description, but you can read KL Section 6.2.6 on linear and differential cryptanalysis and BS Sections 3.7-3.9 and 4.3 for more information. See also this course of Adi Shamir, and the courses of Dunkelman on analyzing block ciphers and hash functions. There is also the fascinating area of side channel attacks on both public and private key crypto, see this course of Tromer.
[bookmark: signaturesrem]
We will discuss in this lecture Digital signatures, which are the public key analog of message authentication codes. Surprisingly, despite being a “public key” object, it is possible to base digital signatures on one-way functions (this is obtained using ideas of Lamport, Merkle, Goldwasser-Goldreich-Micali, Naor-Yung, and Rompel). However these constructions are not very efficient (and this may be inherent), and so in practice people use digital signatures that are built using similar techniques to those used for public key encryption.
[bookmark: public-key-encryptions-definition]Public Key Encryptions: Definition
We now discuss how we define security for public key encryption. As mentioned above, it took quite a while for cryptographers to arrive at the “right” definition, but in the interest of time we will skip ahead to what by now is the standard basic notion (see also PKCfig):
[bookmark: PKCfig][image: ../figure/pkenccartoon.png]
In a public key encryption, the receiver Bob generates a pair of keys . The encryption key  is used for encryption, and the decryption key is used for decryption. We call it a public key system since the security of the scheme does not rely on the adversary Eve not knowing the encryption key. Hence, Bob can publicize the key  to a great many potential receivers and still ensure confidentiality of the messages he receives.
A triple of efficient algorithms  is a public key encryption scheme of length function  if it satisfies the following:
·  is a probabilistic algorithm known as the key generation algorithm that on input  outputs a distribution over pair of keys .

·  is the encryption algorithm that takes a pair of inputs  with  and outputs .

·  is the decryption algorithm that takes a pair of inputs  and outputs .

· For every , with probability  over the choice of  output from  and the coins of ,, .

pubkeydef just refers to the validity of a public-key encryption scheme, namely the condition that we can encrypt and decrypt using the keys  and  respectively, but not to its security. The standard definition of security for public-key encryption is CPA security:
We say that  is CPA secure if every efficient adversary  wins the following game with probability at most :
· 
·  is given  and outputs a pair of messages .
·  is given  for .
·  outputs  and wins if .
[bookmark: section]
Despite it being a “chosen plaintext attack”, we don’t explicitly give  access to the encryption oracle in the public key setting. Make sure you understand why giving it such access would not give it more power.
One metaphor for a public key encryption is a “self-locking lock” where you don’t need the key to lock it (but rather you simply push the shackle until it clicks and lock), but you do need the key to unlock it. So, if Alice generates , then  serves as the “lock” that can be used to encrypt messages for Alice while only  can be used to decrypt the messages. Another way to think about it is that  is a “hobbled key” that can be used for only some of the functions of .
[bookmark: the-obfuscation-paradigm]The obfuscation paradigm
Why would someone imagine that such a magical object could exist? The writing of both James Ellis as well as Diffie and Hellman suggests that their thought process was roughly as follows. You imagine a “magic black box”  such that if all parties have access to  then we could get a public key encryption scheme. Now if public key encryption was impossible it would mean that for every possible program  that computes the functionality of , if we distribute the code of  to all parties, then we don’t get a secure encryption scheme. That means that no matter what program  the adversary gets, she will always be able to get some information out of that code that helps break the encryption, even though she wouldn’t have been able to break it if  was a black box. Now, intuitively understanding arbitrary code is a very hard problem, so Diffie and Hellman imagined that it might be possible to take this ideal  and compile it to some sufficiently low level assembly language so that it would behave as a “virtual black box”.
In particular, if you took, say, the encoding procedure  of a block cipher with a particular key  and ran it through an optimizing compiler, you might hope that while it would be possible to perform this map using the resulting executable, it will be hard to extract  from it. Hence, you could treat this code as a “public key”. This suggests the following approach for getting an encryption scheme:
“Obfuscation based public key encryption”: (Thought experiment - not an actual construction)
Ingredients:
(i) A pseudorandom permutation collection  where for every , 
(ii) An “obfuscating compiler” polynomial-time computable  such that for every circuit ,  is a circuit that computes the same function as .
Operation:
· Key Generation: The private key is , the public key is  where  is the circuit that maps  to .
· Encryption: To encrypt  with public key , choose  and output .
· Decryption: To decrypt  with key , output .
Diffie and Hellman couldn’t really find a way to make this work, but it convinced them this notion of public key is not inherently impossible. This concept of compiling a program into a functionally equivalent but “inscrutable” form is known as software obfuscation. It had turned out to be quite a tricky object to both define formally and achieve, but it serves as very good intuition for what can be achieved, even if, as with the random oracle, this intuition can sometimes be too optimistic. (Indeed, if software obfuscation was possible then we could obtain a “random oracle like” hash function by taking the code of a function  chosen from a PRF family and compiling it through an obfuscating compiler.)
We will not formally define obfuscators yet, but on an intuitive level it would be a compiler that takes a program  and maps into a program  such that:
·  is not much slower/bigger than  (e.g., as a Boolean circuit it would be at most polynomially larger).
·  is functionally equivalent to , i.e.,  for every input .[footnoteRef:51] [51:  For simplicity, assume that the program  is side effect free and hence it simply computes some function, say from  to  for some .] 

·  is “inscrutable” in the sense that seeing the code of  is not more informative than getting black box access to .
Let me stress again that there is no known construction of obfuscators achieving something similar to this definition. In fact, the most natural formalization of this definition is impossible to achieve (as we might see later in this course). Only very recently (exciting!) progress was finally made towards obfuscators-like notions strong enough to achieve these and other applications, and there are some significant caveats, see my survey on this topic and a more recent Quanta article.
However, when trying to stretch your imagination to consider the amazing possibilities that could be achieved in cryptography, it is not a bad heuristic to first ask yourself what could be possible if only everyone involved had access to a magic black box. It certainly worked well for Diffie and Hellman.
[bookmark: some-concrete-candidates]Some concrete candidates:
We would have loved to prove a theorem of the form:
“Theorem”: If the PRG conjecture is true, then there exists a CPA-secure public key encryption.
This would have meant that we do not need to assume anything more than the already minimal notion of pseudorandom generators (or equivalently, one way functions) to obtain public key cryptography. Unfortunately, no such result is known (and this may be inherent). The kind of results we know have the following form:
Theorem: If problem  is hard, then there exists a CPA-secure public key encryption.
Here,  is some problem that people have tried to solve and couldn’t. Thus, we have various candidates for public key encryption, and we fervently hope that at least one of them is actually secure. The dirty little secret of cryptography is that we actually don’t have that many candidates. We really have only two well studied families.[footnoteRef:58] One is the “group theoretic” family that relies on the difficulty of the discrete logarithm (over modular arithmetic or elliptic curves) or the integer factoring problem. The other is the “coding/lattice theoretic” family that relies on the difficulty of solving noisy linear equations or related problems such as finding short vectors in a lattice and solving instances of the “knapsack” problem. Moreover, problems from the first family are known to be efficiently solvable in a computational model known as “quantum computing”. If large scale physical devices that simulate this model, known as quantum computers, exist, then they could break all cryptosystems relying on these problems, and we’ll be down to only having a single family of candidate public key encryption schemes. [58:  There have been some other more exotic suggestions for public key encryption (including some by yours truly as well as suggestions such as the isogeny star problem, though see also this), but they have not yet received wide scrutiny.] 

We will start by describing cryptosystems based on the first family (which was discovered before the other and was more widely implemented), and talk about the second family in future lectures.
[bookmark: diffie-hellman-encryption-aka-el-gamal]Diffie-Hellman Encryption (aka El-Gamal)
The Diffie-Hellman public key system is built on the presumed difficulty of the discrete logarithm problem:
For any number , let  be the set of numbers  where addition and multiplication are done modulo . We will think of numbers  that are of magnitude roughly , so they can be described with about  bits. We can clearly multiply and add such numbers modulo  in  time. If  and  is any natural number, we can define  to be simply  ( times). A priori one might think that it would take  time to compute , which might be exponential if  itself is roughly . However, we can compute this in  time using the repeated squaring trick. The idea is that if , then we can compute  in  by squaring   times, and a general  can be decomposed into powers of two using the binary representation.
The discrete logarithm problem is the problem of computing, given , a number  such that . If such a solution  exists then there is always also a solution of size at most  (can you see why?) and so the solution can be represented using  bits. However, currently the best-known algorithm for computing the discrete logarithm runs in time roughly , which is currently prohibitively expensive when  is a prime of length about  bits.[footnoteRef:63] [63:  The running time of the best known algorithms for computing the discrete logarithm modulo  bit primes is , where  is a function that depends polylogarithmically on . If  would equal , then we’d need numbers of  bits to get  bits of security, but because  is larger than one, the current estimates are that we need to let  bit key to get  bits of of security. Still, the existence of such a non-trivial algorithm means that we need much larger keys than those used for private key systems to get the same level of security. In particular, to double the estimated security to  bits, NIST recommends that we multiply the RSA keysize five-fold to . (The same document also says that SHA-256 gives  bits of security as a pseudorandom generator but only  bits when used to hash documents for digital signatures; can you see why?)] 

John Gill suggested to Diffie and Hellman that modular exponentiation can be a good source for the kind of “easy-to-compute but hard-to-invert” functions they were looking for. Diffie and Hellman based a public key encryption scheme as follows:
· The key generation algorithm, on input , samples a prime number  of  bits description (i.e., between  to ), a number  and . We also sample a hash function . The public key  is , while the secret key  is .[footnoteRef:65] [65:  Formally, the secret key should contain all the information in the public key plus the extra secret information, but we omit the public information for simplicity of notation.] 

· The encryption algorithm, on input a message  and a public key , will choose a random  and output .
· The decryption algorithm, on input a ciphertext  and the secret key, will output .
The correctness of the decryption algorithm follows from the fact that  and hence  computed by the encryption algorithm is the same as the value  computed by the decryption algorithm. A simple relation between the discrete logarithm and the Diffie-Hellman system is the following:
[bookmark: dhinseclem]
If there is a polynomial time algorithm for the discrete logarithm problem, then the Diffie-Hellman system is insecure.
[bookmark: section-1]
Using a discrete logarithm algorithm, we can compute the private key  from the parameters  present in the public key, and clearly once we know the private key we can decrypt any message of our choice.
Unfortunately, no such result is known in the other direction. However, we can prove that this protocol is secure in the random-oracle model, under the assumption that the task of computing  from  and  (which is now known as the Diffie-Hellman problem) is hard.
Computational Diffie-Hellman Assumption: Let  be a group whose elements can be described in  bits, with an associative and commutative multiplication operation that can be computed in  time. The Computational Diffie-Hellman (CDH) assumption holds with respect to the group  if for every generator (see below)  of  and efficient algorithm , the probability that on input ,  outputs the element  is negligible as a function of .[footnoteRef:68] [68:  Formally, since it is an asymptotic statement, the CDH assumption needs to be defined with a sequence of groups. However, to make notation simpler we will ignore this issue, and use it only for groups (such as the numbers modulo some  bit primes) where we can easily increase the “security parameter” .] 

In particular we can make the following conjecture:
Computational Diffie-Hellman Conjecture for mod prime groups: For a random -bit prime and random , the CDH holds with respect to the group .
That is, for every polynomial , if  is large enough, then with probability at least  over the choice of a uniform prime  and , for every circuit  of size at most , the probability that  outputs  such that  is at most  where the probability is taken over  chosen at random in . (In practice people often take  to be a generator of a group significantly smaller in size than , which enables  to be smaller numbers and hence multiplication to be more efficient; we ignore this optimization in our discussions.)
[bookmark: section-2]
Please take your time to re-read the following conjecture until you are sure you understand what it means. Victor Shoup’s excellent and online available book A Computational Introduction to Number Theory and Algebra has an in depth treatment of groups, generators, and the discrete log and Diffie-Hellman problem. See also Chapters 10.4 and 10.5 in the Boneh-Shoup book, and Chapters 8.3 and 11.4 in the Katz-Lindell book. There are also solved group theory exercises at the end of this chapter.
[bookmark: DHROMthm]
Suppose that the Computational Diffie-Hellman Conjecture for mod prime groups is true. Then, the Diffie-Hellman public key encryption is CPA secure in the random oracle model.
For CPA security we need to prove that (for fixed  of size  and random oracle ) the following two distributions are computationally indistinguishable for every two strings :
·  for  chosen uniformly and independently in .
·  for  chosen uniformly and independently in .
(can you see why this implies CPA security? you should pause here and verify this!)
We make the following claim:
CLAIM: For a fixed  of size , generator  for , and given random oracle , if there is a size  distinguisher  with  advantage between the distribution  and the distribution  (where  are chosen uniformly and independently in ), then there is a size  algorithm  to solve the Diffie-Hellman problem with respect to  with success at least . That is, for random ,  with probability at least .
Proof of claim: The proof is simple. We claim that under the assumptions above,  makes the query  to its oracle  with probability at least  since otherwise, by the “lazy evaluation” paradigm, we can assume that  is chosen independently at random after ’s attack is completed and hence (conditioned on the adversary not making that query), the value  is indistinguishable from a uniform output. Therefore, on input ,  can simulate  and simply output one of the at most  queries that  makes to  at random and will be successful with probability at least .
Now given the claim, we can complete the proof of security via the following hybrids. Define the following “hybrid” distributions (where in all cases  are chosen uniformly and independently in ):
· : 
· : 
· : 
· : 
The claim implies that . Indeed otherwise we could transform a distinguisher  between  and  to a distinguisher , violating the claim by letting .
The distributions  and  are identical by the same argument as the security of the one time pad (since  is identical to ).
The distributions  and  are computationally indistinguishable by the same argument that .
Together these imply that  which yields the CPA security of the scheme.
One can get security results for this protocol without a random oracle if we assume a stronger variant known as the Decisional Diffie-Hellman (DDH) assumption: for a random  (prime ), the triple . This implies CDH (can you see why?). DDH also restricts our focus to groups of prime order. In particular, DDH does not hold in even-order groups. For example, DDH does not hold in $\mathbb{Z}^{\*}_p=\{1,2\ldots p-1\}$ (with group operation multiplication mod ) since half of its elements are quadratic residues and it is efficient to test if an element is a quadratic residue using Fermat’s little theorem (can you see why? See Exercise 10.7). However, DDH holds in subgroups of $\mathbb{Z}^{\*}_p$ of prime order. If  is a safe prime (i.e.  for a prime ), then we can instead use the subgroup of quadratic residues, which has prime order . See Boneh-Shoup 10.4.1 for more details on the underlying groups for CDH and DDH.
[bookmark: curverem]
As mentioned, the Diffie-Hellman systems can be run with many variants of Abelian groups. Of course, for some of those groups the discrete logarithm problem might be easy, and so they would be inappropriate to use for this system. One variant that has been proposed is elliptic curve cryptography. This is a group consisting of points of the form  that satisfy a certain equation, where multiplication can be defined in a certain way. The main advantage of elliptic curve cryptography is that the best known algorithms run in time  as opposed to , which allows for much shorter keys. Unfortunately, elliptic curve cryptography is just as susceptible to quantum algorithms as the discrete logarithm problem over .
[bookmark: DHKErem]
In most of the cryptography literature the protocol above is called the Diffie-Hellman Key Exchange protocol, and when considered as a public key system it is sometimes known as ElGamal encryption.[footnoteRef:76] The reason for this mostly stems from the early confusion on what the right security definitions are. Diffie and Hellman thought of encryption as a deterministic process and so they called their scheme a “key exchange protocol”. The work of Goldwasser and Micali showed that encryption must be probabilistic for security. Also, because of efficiency considerations, these days public key encryption is mostly used as a mechanism to exchange a key for a private key encryption that is then used for the bulk of the communication. Together this means that there is not much point in distinguishing between a two-message key exchange algorithm and a public key encryption. [76:  ElGamal’s actual contribution was to design a signature scheme based on the Diffie-Hellman problem, a variant of which is the Digital Signature Algorithm (DSA) described below.] 

[bookmark: sampling-random-primes]Sampling random primes
To sample a random  bit prime, one can sample a random number  and then test if  is prime. If it is not prime, then we can sample a new random number again. To make this work we need to show two properties:
Efficient testing: That there is a  time algorithm to test whether an  bit number is a prime. It turns out that there are such known algorithms. Randomized algorithm have been known since the 1970’s. Moreover in a 2002 breakthrough, Manindra Agrawal, Neeraj Kayal, and Nitin Saxena (a professor and two undergraduate students from the Indian Institute of Technology Kanpur) came up with the first deterministic polynomial time algorithm for testing primality.
Prime density: That the probability that a random  bit number is prime is at least . This probability is in fact  by the Prime Number Theorem. However, for the sake of completeness, we sketch below a simple argument showing the probability is at least .
[bookmark: primedensitylem]
The number of primes between  and  is .
Recall that the least common multiple (LCM) of two or more  is the smallest number that is a multiple of all of the ’s. One way to compute the LCM of  is to take the prime factorizations of all the ’s, and then the LCM is the product of all the primes that appear in these factorizations, each taken to the corresponding highest power that appears in the factorization. Let  be the number of primes between  and . The lemma will follow from the following two claims:
CLAIM 1: .
CLAIM 2: If  is odd, then .
The two claims immediately imply the result, since they imply that , and taking logs we get that  or . (We can assume that  is odd without of loss of generality, since changing from  to  can change the number of primes by at most one.) Thus, all that is left is to prove the two claims.
Proof of CLAIM 1: Let  be all the prime numbers between  and , and let  be the largest integer such that  and . Since  is the product of  terms, each of size at most , . But we claim that every number  divides . Indeed, every prime  in the prime factorization of  is one of the ’s, and since , the power in which  appears in  is at most . By the definition of the least common multiple, this means that . QED (CLAIM 1)
Proof of CLAIM 2: Consider the integral . This is clearly some positive number and so . On one hand, for every  between zero and one,  and hence  is at most . On the other hand, the polynomial  is some polynomial of degree at most  with integer coefficients, and so  for some integer coefficients . Since , we see that  is a sum of fractions with integer numerators and with denominators that are at most . Since all the denominators are at most  and , it follows that , and so

which implies . QED (CLAIM 2 and hence lemma)
[bookmark: a-little-bit-of-group-theory.]A little bit of group theory.
If you haven’t seen group theory, it might be useful for you to do a quick review. We will not use much group theory and mostly use the theory of finite commutative (also known as Abelian) groups (in fact often cyclic) which are such a baby version that it might not be considered true “group theory” by many group theorists. Shoup’s excellent book contains everything we need to know (and much more than that). What you need to remember is the following:
· A finite commutative group  is a finite set together with a multiplication operation that satisfies  and .
·  has a special element known as , where  for every  and for every  there exists an element  such that .
· For every , the order of , denoted , is the smallest positive integer  such that .
The following basic facts are all not too hard to prove and would be useful exercises:
· For every , the map  is a  to  map from  to  where . See footnote for hint.[footnoteRef:83] [83:  For every , you can show a one to one and onto mapping between the set  and the set  by choosing some element  from the latter set and looking at the map .] 

· As a corollary, the order of  is always a divisor of . This is a special case of a more general phenomenon: the set  is a subset of the group  that is closed under multiplication, and such subsets are known as subgroups of . It is not hard to show (using the same approach as above) that for every group  and subgroup , the size of  divides the size of . This is known as Lagrange’s Theorem in group theory.
· An element  of  is called a generator if . A group is called cyclic if it has a generator. If  is cyclic then there is a (not necessarily efficiently computable) isomorphism  which is a one-to-one and onto map satisfying  for every .
When using a group  for the Diffie-Hellman protocol, we want the property that  is a generator of the group, which also means that the map  is a one-to-one mapping from  to . This can be efficiently tested if we know the order of the group and its factorization, since it will occur if and only if  for every  (can you see why this holds?) and we know that if  then  must divide  (and this?).
It is not hard to show that a random element  will be a generator with non-trivial probability (for similar reasons that a random number is prime with non-trivial probability). Hence, an approach to getting such a generator is to simply choose  at random and test that  for all of the fewer than  numbers that are obtained by taking  where  is a factor of .
[bookmark: section-3]
Try to stop here and verify all the facts on groups mentioned above. There are additional group theory exercises at the end of the chapter as well.
[bookmark: digital-signatures]Digital Signatures
Public key encryption solves the confidentiality problem, but we still need to solve the authenticity or integrity problem, which might be even more important in practice. That is, suppose Alice wants to endorse a message  that everyone can verify, but only she can sign. This of course is extremely widely used in many settings, including software updates, web pages, financial transactions, and more.
A triple of algorithms  is a chosen-message-attack secure digital signature scheme if it satisfies the following:
· On input , the probabilistic key generation algorithm  outputs a pair  of keys, where  is the private signing key and  is the public verification key.
· On input a message  and the signing key , the signing algorithm  outputs a string  such that with probability , .
· Every efficient adversary  wins the following game with at most negligible probability:
0. The keys  are chosen by the key generation algorithm.
0. The adversary gets the inputs , , and black box access to the signing algorithm .
0. The adversary wins if they output a pair  such that  was not queried before to the signing algorithm and .
Just like for MACs (see MACdef), our definition of security for digital signatures with respect to a chosen message attack does not preclude the ability of the adversary to produce a new signature for the same message that it has seen a signature of. Just like in MACs, people sometimes consider the notion of strong unforgeability which requires that it would not be possible for the adversary to produce a new message-signature pair (even if the message itself was queried before). Some signature schemes (such as the full domain hash and the DSA scheme) satisfy this stronger notion while others do not. However, just like MACs, it is possible to transform any signature with standard security into a signature that satisfies this stronger unforgeability condition.
[bookmark: the-digital-signature-algorithm-dsa]The Digital Signature Algorithm (DSA)
The Diffie-Hellman protocol can be turned into a signature scheme. This was first done by ElGamal, and a variant of his scheme was developed by the NSA and standardized by NIST as the Digital Signature Algorithm (DSA) standard. When based on an elliptic curve this is known as ECDSA. The starting point is the following generic idea of how to turn an encryption scheme into an identification protocol.
If Alice published a public encryption key , then one natural approach for Alice to prove her identity to Bob is as follows. Bob will send an encryption  of some random message  to Alice, and Alice will send  back. If , then she has proven that she can decrypt ciphertexts encrypted with , and so Bob can be assured that she is the rightful owner of the public key .
However, this falls short of a signature scheme in two aspects:
· This is only an identification protocol and does not allow Alice to endorse a particular message .
· This is an interactive protocol, and so Alice cannot generate a static signature based on  that can be verified by any party without further interaction.
The first issue is not so significant, since we can always have the ciphertext be an encryption of  where  is some hash function presumed to behave as a random oracle. (We do not want to simply run this protocol with . Can you see why?)
The second issue is more serious. We could imagine Alice trying to run this protocol on her own by generating the ciphertext and then decrypting it, and then sending over the transcript to Bob. But this does not really prove that she knows the corresponding private key. After all, even without knowing , any party can generate a ciphertext  and its corresponding decryption. The idea behind the DSA protocol is that we require Alice to generate a ciphertext  and its decryption satisfying some additional extra conditions, which would prove that Alice truly knew the secret key.
DSA Signatures: The DSA signature algorithm works as follows: (See also Section 12.5.2 in the KL book)
· Key generation: Pick generator  for  and  and let . Pick  and  to be some functions that can be thought of as “hash functions”.[footnoteRef:90] The public key is  (as well as the functions ) and secret key is . [90:  It is a bit cumbersome, but not so hard, to transform functions that map strings to strings to functions whose domain or range are group elements. As noted in the KL book, in the actual DSA protocol  is not a cryptographic hash function but rather some very simple function that is still assumed to be “good enough” for security.] 

· Signature: To sign a message  with the key , pick  at random, and let , and then let , where all computation is done modulo . The signature is .
· Verification: To verify a signature  on a message , check that  and .
[bookmark: section-4]
You should pause here and verify that this is indeed a valid signature scheme, in the sense that for every , .
Very roughly speaking, the idea behind security is that on one hand  does not reveal information about  and  because this is “masked” by the “random” value . On the other hand, if an adversary is able to come up with valid signatures, then at least if we treated  and  as oracles, if the signature passes verification then (by taking  to the base of ) the answers  of these oracles will satisfy , which means that sufficiently many such equations should be enough to recover the discrete log .
[bookmark: section-5]
Before seeing the actual proof, it is a very good exercise to try to see how to convert the intuition above into a formal proof.
[bookmark: DSAsec]
Suppose that the discrete logarithm assumption holds for the group . Then the DSA signature with  is secure when  are modeled as random oracles.
Suppose, for the sake of contradiction, that there was a -time adversary  that succeeds with probability  in a chosen message attack against the DSA scheme. We will show that there is an adversary that can compute the discrete logarithm with running time and probability polynomially related to  and  respectively.
Recall that in a chosen message attack in the random oracle model, the adversary interacts with a signature oracle and oracles that compute the functions  and . For starters, we consider the following experiment , where in the chosen message attack we replace the signature box with the following “fake signature oracle” and “fake function  oracle”:
On input a message , the fake box will choose  at random in  (where ), and compute

and output . We will then record the value  and answer  on future queries to . If we’ve already answered  before with a different value, then we halt the experiment and output an error. We claim that the adversary’s chance of succeeding in  is computationally indistinguishable from its chance of succeeding in the original  experiment. Indeed, since we choose the value  at random, as long as we don’t repeat a value  that was queried before, the function  is completely random. But since the adversary makes at most  queries, and each  is chosen according to randomfdsaeq, which yields a random element the group  (which has size roughly ), the probability that  is repeated is at most , which is negligible. Now we computed  in the fake box as a random value, but we can also compute  as equaling , where  is uniform as well, and so the distribution of the signature  is identical to the distribution by a real box.
Note that we can simulate the result of the experiment  without access to the value  such that . We now transform an algorithm  that manages to forge a signature in the  experiment into an algorithm that given  manages to recover .
We let  be the message and signature that the adversary  outputs at the end of a successful attack. We can assume without loss of generality that  is queried to the  oracle at some point during the attack. (For example, by modifying  to make this query just before she outputs the final signature.) So, we split into two cases:
Case I: The value  is first queried by the signature box.
Case II: The value  is first queried by the adversary.
If Case I happens with non-negligible probability, then we know that the value  is queried when producing the signature  for some message , and so we know the following two equations hold:

and

Taking logs we get the following equations on  and :

and

or

since all of the values  are known, this means we can compute , and hence also recover the unknown value .
If Case II happens, then we split it into two cases as well.
Case IIa is the subcase of Case II where  is queried before  is queried, and Case IIb is the subscase of Case II when  is queried after  is queried.
We start by considering the setting that Case IIa happens with non-negligible probability . By the averaging argument there are some  such that with probability at least ,  is queried by the adversary at the -th query and  is queried by the adversary at its -th query. We run the  experiment twice, using the same randomness up until the -th query and independent randomness from then onwards. With probability at least , both experiments will result in a successful forge, and since  was queried before at stage , we get the following equations

and

where  and  are the answers of  to the query  in the first and second time we run the experiment. (The answers of  to  are the same since this happens before the -th step). As before, we can use this to recover .
If Case IIb happens with non-negligible probability, . Then again by the averaging argument there are some  such that with probability at least ,  is queried by the adversary at the -th query, and  is queried by the adversary at its -th query. We run the  experiment twice, using the same randomness up until the -th query and independent randomness from then onwards. This time we will get the two equations

and

where  and  are our two answers in the first and second experiment, and now we can use this to learn .
The bottom line is that we obtain a probabilistic polynomial time algorithm that on input  recovers  with non-negligible probability, hence violating the assumption that the discrete log problem is hard for the group .
[bookmark: nonromsec]
In this lecture both our encryption scheme and digital signature schemes were not proven secure under a well-stated computational assumption but rather used the random oracle model heuristic. However, it is known how to obtain schemes that do not rely on this heuristic, and we will see such schemes later on in this course.
[bookmark: X35de7cf158ebd7002273728472547d576c6657b]Putting everything together - security in practice.
Let us discuss briefly how public key cryptography is used to secure web traffic through the SSL/TLS protocol that we all use when we use https:// URLs. The security this achieves is quite amazing. No matter what wired or wireless network you are using, no matter what country you are in, as long as your device (e.g., phone/laptop/etc..) and the server you are talking to (e.g., Google, Amazon, Microsoft etc.) is functioning properly, you can communicate securely without any party in the middle able to either learn or modify the contents of your interaction.[footnoteRef:96] [96:  They are able to know that such an interaction took place and the amount of bits exchanged. Preventing these kind of attacks is more subtle and approaches for solutions are known as steganography and anonymous routing.] 

In the web setting, there are servers who have public keys, and users who generally don’t have such keys. Ideally, as a user, you should already know the public keys of all the entities you communicate with e.g., amazon.com, google.com, etc. However, how are you going to learn those public keys? The traditional answer was that because they are public these keys are much easier to communicate and the servers could even post them as ads on the New York Times. Of course these days everyone reads the Times through nytimes.com and so this seems like a chicken-and-egg type of problem.
The solution goes back again to the quote of Archimedes of “Give me a fulcrum, and I shall move the world”. The idea is that trust can be transitive. Suppose you have a Mac. Then you have already trusted Apple with quite a bit of your personal information, and so you might be fine if this Mac came pre-installed with the Apple public key which you trust to be authentic. Now, suppose that you want to communicate with Amazon.com. Now, you might not know the correct public key for Amazon, but Apple surely does. So Apple can supply Amazon with a signed message to the effect of
“I Apple certify that the public key of Amazon.com is 30 82 01 0a 02 82 01 01 00 94 9f 2e fd 07 63 33 53 b1 be e5 d4 21 9d 86 43 70 0e b5 7c 45 bb ab d1 ff 1f b1 48 7b a3 4f be c7 9d 0f 5c 0b f1 dc 13 15 b0 10 e3 e3 b6 21 0b 40 b0 a3 ca af cc bf 69 fb 99 b8 7b 22 32 bc 1b 17 72 5b e5 e5 77 2b bd 65 d0 03 00 10 e7 09 04 e5 f2 f5 36 e3 1b 0a 09 fd 4e 1b 5a 1e d7 da 3c 20 18 93 92 e3 a1 bd 0d 03 7c b6 4f 3a a4 e5 e5 ed 19 97 f1 dc ec 9e 9f 0a 5e 2c ae f1 3a e5 5a d4 ca f6 06 cf 24 37 34 d6 fa c4 4c 7e 0e 12 08 a5 c9 dc cd a0 84 89 35 1b ca c6 9e 3c 65 04 32 36 c7 21 07 f4 55 32 75 62 a6 b3 d6 ba e4 63 dc 01 3a 09 18 f5 c7 49 bc 36 37 52 60 23 c2 10 82 7a 60 ec 9d 21 a6 b4 da 44 d7 52 ac c4 2e 3d fe 89 93 d1 ba 7e dc 25 55 46 50 56 3e e0 f0 8e c3 0a aa 68 70 af ec 90 25 2b 56 f6 fb f7 49 15 60 50 c8 b4 c4 78 7a 6b 97 ec cd 27 2e 88 98 92 db 02 03 01 00 01”
Such a message is known as a certificate, and it allows you to extend your trust in Apple to a trust in Amazon. Now when your browser communicates with Amazon, it can request this message, and if it is not present terminate the interaction or at least display some warning. Clearly a person in the middle can stop this message from travelling and hence not allow the interaction to continue, but they cannot spoof the message and send a certificate for their own public key, unless they know Apple’s secret key. (In today’s actual implementation, for various business and other reasons, the trusted keys that come pre-installed in browsers and devices do not belong to Apple or Microsoft but rather to particular companies such as Verisign known as certificate authorities. The security of these certificate authorities’ private key is crucial to the security of the whole protocol, and it has been attacked before.)
Using certificates, we can assume that Bob the user has the public verification key  of Alice the server. Now Alice can send Bob also a public encryption key , which is authenticated by  and hence guaranteed to be correct.[footnoteRef:99] Once Bob knows Alice’s public key they are in business- he can use that to send an encryption of some private key , which they can then use for all the rest of their communication. [99:  If this key is ephemeral- generated on the spot for this interaction and deleted afterward- then this has the benefit of ensuring the forward secrecy property that even if some entity that is in the habit of recording all communication later finds out Alice’s private verification key, then it still will not be able to decrypt the information. In applied crypto circles this property is somewhat misnamed as “perfect forward secrecy” and associated with the Diffie-Hellman key exchange (or its elliptic curves variants), since in those protocols there is not much additional overhead for implementing it (see this blog post). The importance of forward security was emphasized by the discovery of the Heartbleed vulnerability (see this paper) that allowed via a buffer-overflow attack in OpenSSL to learn the private key of the server.] 

This is, at a very high level, the SSL/TLS protocol, but there are many details inside it including the exact security notions needed from the encryption, how the two parties negotiate which cryptographic algorithm to use, and more. All these issues can and have been used for attacks on this protocol. For two recent discussions see this blog post and this website.
[bookmark: tmplabelfig][image: ../figure/certificate.jpg]
When you connect to a webpage protected by SSL/TLS, the browser displays information on the certificate’s authenticity
[bookmark: tmplabelfig][image: ../figure/googletls.jpg]
The cipher and certificate used by ’‘’Google.com’’’. Note that Google has a 2048bit RSA signature key which it then uses to authenticate an elliptic curve based Diffie-Hellman key exchange protocol to create session keys for the block cipher AES with 128 bit key in Galois Counter Mode.
[bookmark: tmplabelfig][image: ../figure/docusign.jpg]
Digital signatures and other forms of electronic signatures are legally binding in many jurisdictions. This is some material from the website of the electronic signing company DocuSign.
Example: Here is the list of certificate authorities that were trusted by default (as of spring 2016) by Mozilla products: Actalis, Amazon, AS Sertifitseerimiskeskuse (SK), Atos, Autoridad de Certificacion Firmaprofesional, Buypass, CA Disig a.s., Camerfirma, Certicámara S.A., Certigna, Certinomis, certSIGN, China Financial Certification Authority (CFCA), China Internet Network Information Center (CNNIC), Chunghwa Telecom Corporation, Comodo, ComSign, Consorci Administració Oberta de Catalunya (Consorci AOC, CATCert), Cybertrust Japan / JCSI, D-TRUST, Deutscher Sparkassen Verlag GmbH (S-TRUST, DSV-Gruppe), DigiCert, DocuSign (OpenTrust/Keynectis), e-tugra, EDICOM, Entrust, GlobalSign, GoDaddy, Government of France (ANSSI, DCSSI), Government of Hong Kong (SAR), Hongkong Post, Certizen, Government of Japan, Ministry of Internal Affairs and Communications, Government of Spain, Autoritat de Certificación de la Comunitat Valenciana (ACCV), Government of Taiwan, Government Root Certification Authority (GRCA), Government of The Netherlands, PKIoverheid, Government of Turkey, Kamu Sertifikasyon Merkezi (Kamu SM), HARICA, IdenTrust, Izenpe S.A., Microsec e-Szignó CA, NetLock Ltd., PROCERT, QuoVadis, RSA the Security Division of EMC, SECOM Trust Systems Co. Ltd., Start Commercial (StartCom) Ltd., Swisscom (Switzerland) Ltd, SwissSign AG, Symantec / GeoTrust, Symantec / Thawte, Symantec / VeriSign, T-Systems International GmbH (Deutsche Telekom), Taiwan-CA Inc. (TWCA), TeliaSonera, Trend Micro, Trustis, Trustwave, TurkTrust, Unizeto Certum, Visa, Web.com, Wells Fargo Bank N.A., WISeKey, WoSign CA Limited
[bookmark: X3ba64454851cd6b425b35b5b85179dcf5863afa]Appendix: An alternative proof of the density of primes
I record here an alternative way to show that the fraction of primes in  is .[footnoteRef:112] [112:  It might be that the two ways are more or less the same, as if we open up the polynomial  we get the binomial coefficients.] 

[bookmark: densityprimesaltlem]
The probability that a random  bit number is prime is at least .
[bookmark: section-6]
Let . We need to show that the number of primes between  and  is at least . Consider the number . By Stirling’s formula we know that  and in particular . Also, by the formula using factorials, all the prime factors of  are between  and , and each factor  cannot appear more than  times. Indeed, for every , the number of times  appears in the factorization of  is , since we get  times a factor  in the factorizations of ,  times a factor of the form , etc. Thus, the number of times  appears in the factorization of  is equal to : a sum of at most  elements (since ) each of which is either  or .
Thus, . Taking logs we get that



establishing that the number of primes in  is .
[bookmark: Xc843cfb3f8621e490c7944a90f6009f138164c7]Additional Group Theory Exercises and Proofs
Below are optional group theory related exercises and proofs meant to help gain an intuition with group theory. Note that in this class, we tend only to talk about finite commutative groups , but there are more general groups:
· For example, the integers (i.e. infinitely many elements) where the operation is addition is a commutative group: if  are integers, then  (commutativity),  (associativity),  (so  is the identity element here; we typically think of the identity as , especially when the group operation is multiplication), and  (i.e. for any integer, we are allowed to think of its additive inverse, which is also an integer).
· A non-commutative group (or a non-abelian group) is a group such that  but  (where  is the group operation). One example (of an infinite, non-commutative group) is the set of  matrices (over the real numbers) which are invertible, and the operation is matrix multiplication. The identity element is the traditional identity matrix, and each matrix has an inverse (and the product of two invertible matrices is still invertible), and matrix multiplication satisfies associativity. However, matrix multiplication here need not satisfy commutativity.
In this class, we restrict ourselves to finite commutative groups to avoid complications with infinite group orders and annoyances with non-commutative operations. For the problems below, assume that a “group” is really a “finite commutative group”.
Here are five more important groups used in cryptography other than . Recall that groups are given by a set and a binary operation.
· For some prime , , with operation multiplication mod  (Note: the  is to distinguish this group from  with an additive operation and from .)
· The quadratic residues of :  with operation multiplication mod 
· , where  (product of two primes)
· The quadratic residues of :: , where 
· Elliptic curve groups
For more familiarity with group definitions, you could verify that the first 4 groups satisfy the group axioms. For cryptography, two operations need be efficient for elements  in group :
· Exponentiation: . This is done efficiently using repeated squaring, i.e. generate all the squares up to  and then use the binary representation.
· Inverse: . This is done efficiently in $\mathbb{Z}_p^{\*}$ by Fermat’s little theorem.  mod .
[bookmark: solved-exercises]Solved exercises:
Is the set  a group if the operation is multiplication mod ? What if the operation is addition mod ?
Yes (if multiplication) and no (if addition). To prove that something is a group, we run through the definition of a group. This set is finite, and multiplication (even multiplication mod some number) will satisfy commutativity and associativity. The identity element is  because any number times , even mod , is still itself. To find inverses, we can in this case literally find the inverses.  (so the inverse of  is ).  (so the inverse of  is , and from commutativity, the inverse of  is ).  (so the inverse of  is , and the inverse of  is ).  (so  is its own inverse; notice that an element can be its own inverse, even if it is not the identity ). The set  is not a group if the operation is addition for many reasons: one way to see this , but  is not an element of , so this group is not closed under its operation (implicit in the definition of a group is the idea that a group’s operation must send two group elements to another element within the same set of group elements).
What are the generators of the group , where the operation is multiplication mod ?
 and . Recall that a generator of a group is an element  such that  is the entire group. We can directly check the elements here: , so  is not a generator.  is not a generator because , so the set  is really the set , which is not the entire group.  will be a generator because , , , , , so , which are all of the elements.  is not a generator because , so just like , we won’t get every element.  is a generator because , so just like ,  is a generator.  is not a generator because , so just like , the set  cannot contain all elements (it will just have  and ).
What is the order of every element in the group , where the operation is multiplication mod ?
The orders (of ) are , respectively. This can be seen from the work of the previous problem, where we test out powers of elements. Notice that all of these orders divide the number of elements in our group. This is not a coincidence, and it is an example of Lagrange’s Theorem, which states that the size of every subgroup of a group will divide the order of a group. Recall that a subgroup is simply a subset of the group which is a group in its own right and is closed under the operation of the group.
Suppose we have some (finite, commutative) group . Prove that the inverse of any element is unique (i.e. prove that if , then if  such that  and , then ).
Suppose that  and that  such that  and . Then we know that , and then we can apply  to both sides (we are guaranteed that  has SOME inverse  in the group), and so we have , but we know that  (and we can use associativity of a group), so  so . QED.
Suppose we have some (finite, commutative) group . Prove that the identity element is unique (i.e. if  for all  and if  for all , then ).
Suppose that  for all  and that  for all . Then we can say that  (for any , but we can choose some  in particular, we could have picked ). And then  has some inverse element  in the group, so , but , so  as desired. QED
The next few problems are related to quadratic residues, but these problems are a bit more general (in particular, we are considering some group, and a subgroup which are all of the elements of the first group which are squares).
Suppose that  is some (finite, commutative) group, and  is the set defined by . Verify that  is a subgroup of .
To be a subgroup, we need to make sure that  is a group in its own right (in particular, that it contains the identity, that it contains inverses, and that it is closed under multiplication; associativity and commutativity follow because we are within a larger set  which satisfies associativity and commutativity).
Identity Well, , so , so  has the identity element. Inverses If , then  for some , but  has an inverse in , and we can look at  (where I used commutativity and associativity, as well as the definition of the inverse). It is clear that  because there exists an element in  (specifically, ) whose square is . Therefore  has an inverse in , where if , then . Closure under operation If , then there exist  where . So , so . Therefore,  is a subgroup of .
Assume that  is an even number and is known, and that  for any . Also assume that  is a cyclic group, i.e. there is some  such that any element  can be written as  for some integer . Also assume that exponentiation is efficient in this context (i.e. we can compute  for any  in an efficient time for any ).
Under the assumptions stated above, prove that there is an efficient way to check if some element of  is also an element of , where  is still the subgroup of squares of elements of  (note: running through all possible elements of  may not be efficient, so this cannot be your strategy).
Suppose that we receive some element . We want to know if there exists some  such that  (this is equivalent to  being in ). To do so, compute . I claim that  if and only if .
(Proving the if): If , then  for some . We then have that . But from our assumption, an element raised to the order of the group is , so , so . As a result, if , then .
(Proving the only if): Now suppose that . At this point, we use the fact that  is cyclic, so let  be the generator of . We know that  is some power of , and this power is either even or odd. If the power is even, we are done. If the power is odd, then  for some natural number . And then we see . We can use the assumption that any element raised to its group’s order is , so . This tells us that the order of  is at most , but this is a contradiction because  is a generator of , so its order cannot be less than  (if it were, then looking at , we would only count at most half of the elements before cycling back to , so this set wouldn’t contain all of ). As a result, we have reached a contradiction, so  means that , so .
We are given that this exponentiation is efficient, so checking  is an efficient and correct way to test if . QED.
This proof idea came from here as well as from the 2/25/20 lecture at Harvard given by MIT professor Yael Kalai.
Commentary on assumptions and proof: Proving that  is a useful exercise in its own right, but it overlaps somewhat with our problem sets of 2020, so we will not prove it here; observe that if  is the set of  for some prime , then this is a special case of Fermat’s Little Theorem, which states that  for . Also, one can prove that $Z_p^{\*}$ (the set of numbers , with operation multiplication mod ) for  a prime is cyclic, where one method can be found here, where the proof comes down to factorizing certain polynomials and decomposing numbers in terms of prime powers. We can then see that this proof above says that there is an efficient way to test whether an element of $Z_p^{\*}$ is a square or not.
rId105.jpg
@ VeriSign GeoTrust thawte SSL, PCI Compliance, Domein Registration - Mozilla Firefox.

Eile Edit View History Bookmarks Tools Help

6 @ C @
5| Most Visited || Getting State

® VeriSign GeoTrust thawte

SECURE128

Your Security Solutions Specialist

Search

Home

Domain Registration

Free 30 Day SSL Cert

R oot
\” securel128.com
which is run by

Secure128 (RSoft Consulting, Inc.)
Roswell
Georgia, US

Verified by: Verisign, Inc.

£ Yourcomectionto thisweb se s encryptecto

hitps://wnww.securel28.com/index

mpli

VeriSign Seal-in-Search

New! The VeriSign Trust Seal, the most recognized




rId107.jpg
B Overview

Main Origin
® httpsi/fwwwgooglecom
Non-Secure Origins

& chrome-extension//nbokbjkat
Secure Origins

® hitps:/ssl.gstatic.com

® hitps:/Ih4 googleusercontent.
® hitps://wwaw gstatic.com

® hitps:/apis google.com

® hitps:/plus google.com

Origin

@ httpsi//www.google.com
View requests in Network Panel

Connection
Protocol

Key Exchange
Cipher Suite:

Certificate

Subject

san
Valid From
Valid Until

TS 12
ECDHERSA
AES 128 GCM

wanngooglecom
wanngooglecom

Thu, 11 Feb 2016 11:17:05 GMT
Wed, 11 May 2016 00:00:00 GMT
Google Internet Authority G2

Open full certificate details

The security details above are from the first inspected

response.

General | Detais | Certfication Path

Certfication path

53] GeoTrust Gabal CA
5 Googe Intemet Authority G2
G5l www.google.com

Certicate status:

View Certfiate

is certfcate & OK,





rId109.jpg
Industries  Developers  Support  Pri

g More

Digital signatures are like electronic “fingerprints.” In the form of a coded message,
the digital signature securely associates a signer with a8 document in a recorded
transaction. Digital signatures use a standard, accepted format, called Public Key
Infrastructure (PKI), to provide the highest levels of security and universal
acceptance. They are a specific signature technology implementation of electronic
signature (eSignature)

How do digital signatures work?

Digital signatures, like handwritten signatures, are unique to each signer. Digital signature solution providers, such
s Docusign, follow a specific protocol, called PKI. PKI requires the provider to use a mathematical algorithm to
generate two long numbers, called keys. One key is public, and one key is private.

When 3 signer electronically signs a document, the signature is created using the signer’s private key, which is
always securely kept by the signer. The mathematical algorithm acts like 3 cipher, creating data matching the
signed document, called 3 hash, and encrypting that data. The resulting encrypted data is the digital signature. The
signature is also marked with the time that the document was signed. If the document changes after signing, the
digital signature is invalidated

As an example, Jane signs an agreement to sell 3 timeshare using her private key. The buyer receives the
document. The buyer who receives the document also receives 3 copy of Jane’s public key. If the public key can't
decrypt the signature (via the cipher from which the keys were created), it means the signature isn't Jane’s, or has
been changed since it was signed. The signature is then considered invalid

To protect the integrity of the signature, PKI requires that the keys be created, conducted, and saved in a secure
manner, and often requires the services of 3 reliable Certificate Authority (CA). Digital signature providers, like
DocusSign, meet PKI requirements for safe digital signing

Signer .

/‘ Hash
Algorithm

Data Hash. O—n Digitally Signed

Encryption -

Privete Key Document
Hash ifi
. > [ooon rml Verifier
Algorithm Signature s valid
Hash when hash values
are equal
—_— Decryption —————p [o00n cm'

Digitally Signed i m®] Hash

Document
Public Key





rId22.png
Pryeit 2 locles wpnt Masonabts
iy ory sy g o

c.s. 2w

Ay derritly? Talprome ohod Hinn Frday.
Progoct Proposal
Topter  Establishing secure comnications betwesn seperate

secure sites over insecure cosmuntcation lines.

Assumptions: No prior arransenents have been made between the two
sites, and 1t 1s assused that any inforsation knows
at etther site 1s know to the eemy. The sites,
hovever, are now secure, and any new inforsation w1l
ot be divulged,




rId28.png




rId45.png




