
1 I am not an economist by any stretch of the imagina-
tion, so please take the discussion below with a huge
grain of salt. I would appreciate any comments on it.

7
Hash Functions, Random Oracles, and Bitcoin

We have seen pseudorandom generators, functions and permuta-
tions, as well as Message Authentication codes, CPA and CCA secure
encryptions. This week we will talk about cryptographic hash func-
tions and some of their magical properties. We motivate this by the
Bitcoin cryptocurrency. As usual our discussion will be highly abstract
and idealized, and any resemblance to real cryptocurrencies, living or
dead, is purely coincidental.

7.1 THE “BITCOIN” PROBLEM

Using cryptography to create a centralized digital-currency is fairly
straightforward, and indeed this is what is done by Visa, Mastercard,
and so on. The main challenge with Bitcoin is that it is decentralized.
There is no trusted server, there are no “user accounts”, no central
authority to adjudicate claims. Rather we have a collection of anony-
mous and autonomous parties that somehow need to agree on what is
a valid payment.

7.1.1 The Currency Problem
Before talking about cryptocurrencies, let’s talk about currencies in
general.1 At an abstract level, a currency requires two components:

• A scarce resource.

• A mechanism for determining and transferring ownership of certain
quantities of this resource.

Some currencies are/were based on commodity money. The scarce
resource was some commodity having intrinsic value, such as gold
or silver, or even salt or tea, and ownership based on physical pos-
session. However, for various financial and political reasons, some
societies shifted to representative money, where the currency is not
the commodity itself but rather a certificate that provides the right to
the commodity. Representative money requires trust in some central

Compiled on 11.17.2021 22:35

https://goo.gl/K7awAW
https://goo.gl/K6c4qP


162 an intensive introduction to cryptography

2 This is one of the places where we simplify and
deviate from the actual Bitcoin system. In the actual
Bitcoin system, the atomic unit is known as a Satoshi
and one Bitcoin (abbreviated BTC) is 108 Satoshis.
For reasons of efficiency, there is no individual iden-
tifier per Satoshi and transactions can involve transfer
and creation of multiple Satoshis. However, conceptu-
ally we can think of atomic coins each of which has a
unique identifier.

authority that would respect the certificate. The next step in the evo-
lution of currencies was fiat money, which is a currency (like today’s
dollar, ever since the U.S. moved off the gold standard) that does not
correspond to any commodity, but rather only relies on trust in a cen-
tral authority. (Another example is the Roman coins, which though
originally made of silver, underwent a continous process of debase-
ment until they contained less than two percent of it.) One advantage
(sometimes disadvantage) of a fiat currency is that it allows for more
flexible monetary policy on parts of the central authority.

7.1.2 Bitcoin Architecture
Bitcoin is a fiat currency without a central authority. A priori this
seems like a contradiction in terms. If there is no trusted central au-
thority, how can we ensure a scarce resource? Who settles claims of
ownership? And who sets monetary policy?

For instance, one problem we are particularly concerned with is the
double-spend problem. The following scenario is a double-spend:

1. Adversary 𝐴 orders a pizza from Pinocchio’s.
2. 𝐴 gives Pinocchio’s a particular “set” of money 𝑚.
3. 𝐴 eats the pizza.
4. 𝐴 gives that same set of money 𝑚 to another Domino’s such that

Pinocchio’s no longer has that money.
5. 𝐴 eats the second pizza.

With cash, this situation is unfathomable. But think about a credit
card: if you can “revoke” (or dispute) the first payment, you could
take money away from Pinocchio’s after you’ve received some goods or
services. Also consider that rather than giving 𝑚 to Domino’s in step
4, 𝐴 could just give 𝑚 back to itself.

We want to make it difficult or impossible for the anyone to perform
a double-spend like this.

Bitcoin (and other cryptocurrencies) aims to provide cryptographic
solutions to this problem and more.

The basic unit in the Bitcoin system is a coin. Each coin has a unique
identifier, and a current owner .2 Transactions in the system have either
the form of “mint coin with identifier ID and owner 𝑃” or “transfer
the coin ID from 𝑃 to 𝑄”. All of these transactions are recorded in a
public ledger.

Since there are no user accounts in Bitcoin, the “entities” 𝑃 and 𝑄
are not identifiers of any physical person. Rather 𝑃 and 𝑄 are “com-
putational puzzles”. A computational puzzle can be thought of as a
string 𝛼 that specifies some “problem” such that it’s easy to verify
whether some other string 𝛽 is a “solution” for 𝛼, but it is hard to find
such a solution on your own. (Students with complexity background

https://en.wikipedia.org/wiki/Fiat_money
https://goo.gl/SPN5BS
https://goo.gl/ZDkGzL
https://goo.gl/ZDkGzL


hash functions, random oracles, and bitcoin 163

3 There are reasons why Bitcoin uses digital signatures
and not these puzzles. The main issue is that we
want to bind the puzzle not just to the coin but also
to the particular transaction, so that if you know the
solution to the puzzle 𝑃 corresponding to the coin
ID and want to use that to transfer it to 𝑄, it won’t be
possible for someone to take your solution and use
that to transfer the coin to 𝑄′ before your transaction
is added to the public ledger. We will come back to
this issue after we learn about digital signatures. As
a quick preview, in Bitcoin the puzzle is as follows:
whoever can produce a digital signature with the
private key corresponding to the public key 𝑃 can
claim these coins.

will recognize here the class NP.) So when we say “transfer the coin
ID from 𝑃 to 𝑄” we mean that whomever holds a solution for the
puzzle 𝑄 is now the owner of the coin ID (and to verify the authen-
ticity of this transfer, you provide a solution to the puzzle 𝑃 .) More
accurately, a transaction involving the coin ID is self-validating if it
contains a solution to the puzzle that is associated with ID according
to the latest transaction in the ledger.

P
Please re-read the previous paragraph, to make sure
you follow the logic.

One theoretical example of a puzzle is the following: if 𝑁 is the
puzzle, an entity can “prove” that they own coins assigned to 𝑁 if
they can produce numbers 𝐴,𝐵 such that 𝑁 = 𝐴 ⋅ 𝐵.

Another more generic example (that you can keep in mind as a
potential implementation for the puzzles we use here) is: 𝛼 is some
string in {0, 1}2𝑛 and 𝛽 will be a string in {0, 1}𝑛 such that 𝛼 = 𝐺(𝛽)
where 𝐺 ∶ {0, 1}𝑛 → {0, 1}2𝑛 is some pseudorandom generator.

The real Bitcoin system typically uses puzzles based on digital sig-
natures, a concept we will learn about later in this course, but you can
simply think of 𝑃 as specifying some abstract puzzle and every per-
son that can solve 𝑃 can construct transactions with the coins owned
by 𝑃 .3 Unfortunately, this means if you lose the solution to the puz-
zle then you have no access to the coin. More alarmingly, if someone
steals the solution from you, then you have no recourse or way to get
your coin back. People have managed to lose millions of dollars in this
way.

7.2 THE BITCOIN LEDGER

The main idea behind Bitcoin is that there is a public ledger that con-
tains an ordered list of all the transactions that were ever performed
and are considered as valid in the system. Given such a ledger, it is
easy to answer the question of who owns any particular coin. The
main problem is how does a collection of anonymous parties with-
out any central authority agree on this ledger? This is an instance of
the consensus problem in distributed computing. This seems quite
scary, as there are very strong negative results known for this prob-
lem; for example the famous Fischer, Lynch, Patterson (FLP) result
showed that if there is even one party that has a benign failure (i.e.,
it halts and stop responding) then it is impossible to guarantee con-
sensus in a completely asynchronous network. Things are better if
we assume some degree of partial synchrony (i.e., a global clock and

http://readwrite.com/2014/01/13/what-happens-to-lost-Bitcoins
http://the-paper-trail.org/blog/a-brief-tour-of-flp-impossibility/


164 an intensive introduction to cryptography

4 This was a rather visionary paper in that it foresaw
this issue before the term “spam” was introduced and
indeed when email itself, let alone spam email, was
hardly widespread.

some bounds on the latency of messages) as well as that a majority or
supermajority of the parties behave correctly.

The partial synchrony assumption is typically approximately main-
tained on the Internet, but the honest majority assumption seems
quite suspicious. What does it mean a “majority of parties” in an
anonymous network where a single person can create multiple “en-
tities” and cause them to behave arbitrarily maliciously (known as
“byzantine” faults in distributed parlance)? Also, why would we
assume that even one party would behave honestly- if there is no cen-
tral authority and it is profitable to cheat then everyone would cheat,
wouldn’t they?

Figure 7.1: The Bitcoin ledger consists of an ordered
list of transactions. At any given point in time there
might be several “forks” that continue the ledger, and
different parties do not necessarily have to agree on
them. However, the Bitcoin architecture is designed to
ensure that the parties corresponding to a majority of
the computing power will reach consensus on a single
ledger.

Perhaps the main idea behind Bitcoin is that “majority” will corre-
spond to a “majority of computing power”, or as the original Bitcoin
paper says, “one CPU one vote” (or perhaps more accurately, “one
cycle one vote”). It might not be immediately clear how to imple-
ment this, but at least it means that creating fictitious new entities
(sometimes known as a Sybil attack after the movie about multiple-
personality disorder) cannot help. To implement it we turn to a cryp-
tographic concept known as “proof of work” which was originally
suggested by Dwork and Naor in 1991 as a way to combat mass mar-
keting email.4

Consider a pseudorandom function {𝑓𝑘} mapping 𝑛 bits to ℓ bits.
On average, it will take a party Alice 2ℓ queries to obtain an input 𝑥
such that 𝑓𝑘(𝑥) = 0ℓ. So, if we’re not too careful, we might think of
such an input 𝑥 as a proof that Alice spent 2ℓ time.

P
Stop here and try to think if indeed it is the case that
one cannot find an input 𝑥 such that 𝑓𝑘(𝑥) = 0ℓ using
much fewer than 2ℓ steps.

The main question in using PRF’s for proofs of work is who is hold-
ing the key 𝑘 for the pseudorandom function. If there is a trusted
server holding the key, then sure, finding such an input 𝑥 would take
on average 2ℓ queries, but the whole point of Bitcoin is to not have a

https://Bitcoin.org/Bitcoin.pdf
https://Bitcoin.org/Bitcoin.pdf
https://goo.gl/jMZ7Qg


hash functions, random oracles, and bitcoin 165

trusted server. If we give 𝑘 to a party Alice, then can we guarantee
that she can’t find a “shortcut” to find such an input without running
2ℓ queries? The answer, in general, is no.

P
Indeed, it is an excellent exercise to prove that (under
the PRF conjecture) that there exists a PRF {𝑓𝑘} map-
ping 𝑛 bits to 𝑛 bits and an efficient algorithm 𝐴 such
that 𝐴(𝑘) = 𝑥 such that 𝑓𝑘(𝑥) = 0ℓ.

However, suppose that {𝑓𝑘} was somehow a “super-strong PRF”
that would behave like a random function even to a party that holds
the key. In this case, we can imagine that making a query to 𝑓𝑘 corre-
sponds to tossing ℓ independent random coins, and it would not be
feasible to obtain 𝑥 such that 𝑓𝑘(𝑥) = 0ℓ using much less than 2ℓ cy-
cles. Thus presenting such an input 𝑥 can serve as a “proof of work”
that you’ve spent 2ℓ cycles or so. By adjusting ℓ we can obtain a proof
of spending 𝑇 cycles for a value 𝑇 of our choice. Now if things would
go as usual in this course then I would state a result like the following:

Theorem: Under the PRG conjecture, there exist
super strong PRF.

Where again, the “super strong PRF” behaves like a truly random
function even to a party that holds the key. Unfortunately such a result
is not known to be true, and for a very good reason. Most natural
ways to define “super strong PRF” will result in properties that can be
shown to be impossible to achieve. Nevertheless, the intuition behind it
still seems useful and so we have the following heuristic:

The random oracle heuristic (aka “Random oracle
model”, Bellare-Rogaway 1993): If a “natural”
protocol is secure when all parties have access to
a random function 𝐻 ∶ {0, 1}𝑛 → {0, 1}ℓ, then it
remains secure even when we give the parties the
description of a cryptographic hash function with the
same input and output lengths.

We don’t have a good characterization as to what makes a proto-
col “natural” and we do have fairly strong counterexamples to this
heuristic (though they are arguably “unnatural”). That said, it still
seems useful as a way to get intuition for security, and in particular to
analyze Bitcoin (and many other practical protocols) we do need to
assume it, at least given current knowledge.

R



166 an intensive introduction to cryptography

5 The actual Bitcoin protocol is slightly more general,
where the proof is some 𝑥 such that 𝐻(ID‖𝑥), when
interpreted as a number in [2𝑛], is at most 𝑇 . There
are also other issues about how exactly 𝑥 is placed
and ID is computed from past history that we ignore
here.

Remark 7.1 — Important caveat on the random oracle
model. The random oracle heuristic is very different
from all the conjectures we considered before. It is
not a formal conjecture since we don’t have any good
way to define “natural” and we do have examples
of protocols that are secure when all parties have ac-
cess to a random function but are insecure whenever
we replace this random function by any efficiently
computable function (see the homework exercises).

Under the random oracle model, we can now specify the “proof of
work” protocol for Bitcoin. Given some identifier ID ∈ {0, 1}𝑛, an
integer 𝑇 ≪ 2𝑛, and a hash function 𝐻 ∶ {0, 1}2𝑛 → {0, 1}𝑛, the proof
of work corresponding to ID and 𝑇 will be some 𝑥 ∈ {0, 1}∗ such that
the first ⌈log𝑇⌉ bits of 𝐻(ID‖𝑥) are zero.5

7.2.1 From Proof of Work to Consensus on Ledger
How does proof of work help us in achieving consensus?

We want every transaction 𝑡𝑖 in the Bitcoin system to have a
corresponding proof of work. In particular, some proof of 𝑇𝑖 time
“amount” of work with respect to some identifier that is unique to 𝑡𝑖.

The length of a ledger (𝑡1,… , 𝑡𝑛) is the sum of the corresponding
𝑇𝑖’s. In other words, the length corresponds to the total number of
cycles invested in creating this ledger. A ledger is valid if every trans-
action in the ledger of the form “transfer the coin ID from 𝑃 to 𝑄” is
self-certified by a solution to 𝑃 .

Critically, participants (specifically miners) in the Bitcoin network
are rewarded for adding valid entries to the ledger. In other words,
they are given Bitcoins (which are newly minted for them) for per-
forming the “work” required to add an entry to the ledger. However,
honest participants (including non-miners, people who just read the
ledger) will accept the longest known ledger as the ground truth. In
addition, Bitcoin miners are rewarded for adding entry 𝑖 after entry
𝑖 + 100 is added to the ledger. This gives miners an incentive to choose
the longest ledger to contribute their work towards. To see why, con-
sider the following rough approximation of the incentive structure:

Remember that Bitcoin miners are rewarded for adding entry 𝑖 after
entry 𝑖 + 100 is added to the ledger. Thus, by spending “work” (which
directly corresponds to CPU cycles, which directly corresponds to
monetary value), miners are “betting” on whether a particular ledger
will “win”. Think of yourself as a miner, and consider a scenario in
which there are two competing ledgers. Ledger 1 has length 3 and
Ledger 2 has length 6. That means miners have put roughly 2x the
amount of work (= CPU cycles = money) into Ledger 2. In order for
Ledger 1 to “win” (from your perspective that means reach length



hash functions, random oracles, and bitcoin 167

104 to claim your prize and to become longer than Ledger 2), you
would have to perform 3 entries worth of work just to get Ledger 1 to
length 6. But in the meantime, other miners will already be working on
Ledger 2, further increasing its length! Thus you want to add entries
to Ledger 2.

If a ledger 𝐿 corresponds to the majority of the cycles that were
available in this network then every honest party would accept it, as
any alternative ledger would be necessarily shorter. (See Fig. 7.1.)

Thus one can hope that the consensus ledger will continue to grow.
(This is a rather hand-wavy and imprecise argument, see this paper
for a more in depth analysis; this is also related to the phenomenon
known as preferential attachment.)

Cost to mine, mining pools: Generally, if you know that completing a
𝑇 -cycle proof will get you a single coin, then making a single query
(which will succeed with probability 1/𝑇 ) is akin to buying a lottery
ticket that costs you a single cycle and has probability 1/𝑇 to win
a single coin. One difference over the actual lottery is that there is
also some probability that you’re working on the wrong fork of the
ledger, but this incentivizes people to avoid this as much as possible.
Another, perhaps even more major difference, is that things are setup
so that this is a profitable enterprise and the cost of a cycle is smaller
than the value of 1/𝑇 coins. Just like in the lottery, people can and
do gather in groups (known as “mining pools”) where they pool
together all their computing resources, and then split the award if they
win it. Joining a pool doesn’t change your expectation of winning but
reduces the variance. In the extreme case, if everyone is in the same
pool, then for every cycle you spend you get exactly 1/𝑇 coins. The
way these pools work in practice is that someone that spent 𝐶 cycles
looking for an output with all zeroes, only has probability 𝐶/𝑇 of
getting it, but is very likely to get an output that begins with log𝐶
zeroes. This output can serve as their own “proof of work” that they
spent 𝐶 cycles and they can send it to the pool management so they
get an appropriate share of the reward.

The real Bitcoin: There are several aspects in
which the protocol described above differs from the
real Bitcoin protocol. Some of them were already
discussed above: Bitcoin typically uses digital sig-
natures for puzzles (though it has a more general
scripting language to specify them), and transac-
tions involve a number of Satoshis (and the user
interface typically displays currency is in units of
BTC which are 108 Satoshis). The Bitcoin protocol
also has a formula designed to factor in the decrease
in dollar cost per cycle so that Bitcoins become more

https://eprint.iacr.org/2015/261
https://en.wikipedia.org/wiki/Preferential_attachment


168 an intensive introduction to cryptography

Figure 7.2: A collision-resistant hash function is a
map that from a large universe to a small one that is
“practically one to one” in the sense that collisions for
the function do exist but are hard to find.

expensive to mine with time. There is also a fee
mechanism apart from the mining to incentivize
parties to add to the ledger. (The issue of incentives
in Bitcoin is quite subtle and not fully resolved,
and it is possible that parties’ behavior will change
with time.) The ledger does not grow by a single
transaction at a time but rather by a block of transac-
tions, and there is also some timing synchronization
mechanism (which is needed, as per the consensus
impossibility results). There are other differences
as well; see the Bonneau et al paper as well as the
Tschorsch and Scheuermann survey for more.

7.3 COLLISION RESISTANCE HASH FUNCTIONS AND CREATING
SHORT “UNIQUE” IDENTIFIERS

Another issue we “swept under the carpet” is how do we come up
with these unique identifiers per transaction. We want each transac-
tion 𝑡𝑖 to be bound to the ledger state (𝑡1,… , 𝑡𝑖−1), and so the ID of 𝑡𝑖
should contain also the ID’s all the prior transactions. But yet we want
this ID to be only 𝑛 bits long. Ideally, we could solve this if we had
a one to one mapping 𝐻 from {0, 1}𝑁 to {0, 1}𝑛 for some very large
𝑁 ≫ 𝑛. Then the ID corresponding to the task of appending 𝑡𝑖 to
(𝑡1,… , 𝑡𝑖−1) would simply be 𝐻(𝑡1‖⋯ ‖𝑡𝑖). The only problem is that
this is of course clearly impossible- 2𝑁 is much bigger than 2𝑛 and
there is no one to one map from a large set to a smaller set. Luckily we
are in the magical world of crypto where the impossible is routine and
the unimaginable is occasional. So, we can actually find a function 𝐻
that is “essentially” one to one.

The main idea is the following simple result, which can be thought
of as one side of the so called “birthday paradox”:

Lemma 7.2 If 𝐻 is a random function from some domain 𝑆 to {0, 1}𝑛,
then the probability that after 𝑇 queries an attacker finds 𝑥 ≠ 𝑥′ such
that 𝐻(𝑥) = 𝐻(𝑥′) is at most 𝑇 2/2𝑛.

Proof. Let us think of 𝐻 in the “lazy evaluation” mode where for
every query the adversary makes, we choose a random answer in
{0, 1}𝑛 at the time it is made. (We can assume the adversary never
makes the same query twice since a repeat query can be simulated by
repeating the same answer.) For 𝑖 < 𝑗 in [𝑇 ] let 𝐸𝑖,𝑗 be the event that
𝐻(𝑥𝑖) = 𝐻(𝑥𝑗). Since 𝐻(𝑥𝑗) is chosen at random and independently
from the prior choice of 𝐻(𝑥𝑖), the probability of 𝐸𝑖,𝑗 is 2−𝑛. Thus the
probability of the union of 𝐸𝑖,𝑗 over all 𝑖, 𝑗’s is less than 𝑇 2/2𝑛, but this
probability is exactly what we needed to calculate.

■

https://eprint.iacr.org/2015/261
https://eprint.iacr.org/2015/464
https://goo.gl/GSPrDW


hash functions, random oracles, and bitcoin 169

6 Note that the other side of the birthday bound
shows that you can always find a collision in ℎ𝑘 using
roughly 2𝑛/2 queries. For this reason we typically
need to double the output length of hash functions
compared to the key size of other cryptographic
primitives (e.g., 256 bits as opposed to 128 bits).

This means that a random function 𝐻 is collision resistant in the
sense that it is hard for an efficient adversary to find two inputs that
collide. Thus the random oracle heuristic would suggest that a crypto-
graphic hash function can be used to obtain the following object:

Definition 7.3 — Collision resistant hash functions. A collection {ℎ𝑘} of
functions where ℎ𝑘 ∶ {0, 1}∗ → {0, 1}𝑛 for 𝑘 ∈ {0, 1}𝑛 is a collision
resistant hash function (CRH) collection if the map (𝑘, 𝑥) ↦ ℎ𝑘(𝑥)
is efficiently computable and for every efficient adversary 𝐴,
the probability over 𝑘 that 𝐴(𝑘) = (𝑥, 𝑥′) such that 𝑥 ≠ 𝑥′ and
ℎ𝑘(𝑥) = ℎ𝑘(𝑥′) is negligible. 6

Once more we do not know a theorem saying that under the PRG
conjecture there exists a collision resistant hash function collection,
even though this property is considered as one of the desiderata for
cryptographic hash functions. However, we do know how to obtain
collections satisfying this condition under various assumptions that
we will see later in the course such as the learning with error problem
and the factoring and discrete logarithm problems. Furthermore if
we consider the weaker notion of security under a second preimage
attack (also known as being a “universal one way hash function” or
UOWHF) then it is known how to derive such a function from the
PRG assumption.

R
Remark 7.4 — CRH vs PRF. A collection {ℎ𝑘} of colli-
sion resistant hash functions is an incomparable object
to a collection {𝑓𝑠} of pseudorandom functions with
the same input and output lengths. On one hand,
the condition of being collision-resistant does not
imply that ℎ𝑘 is indistinguishable from random. For
example, it is possible to construct a valid collision
resistant hash function where the first output bit al-
ways equals zero (and hence is easily distinguishable
from a random function). On the other hand, unlike
Definition 4.1, the adversary of Definition 7.3 is not
merely given a “black box” to compute the hash func-
tion, but rather the key to the hash function. This is a
much stronger attack model, and so a PRF does not
have to be collision resistant. (Constructing a PRF that
is not collision resistant is a nice and recommended
exercise.)



170 an intensive introduction to cryptography

7.4 PRACTICAL CONSTRUCTIONS OF CRYPTOGRAPHIC HASH
FUNCTIONS

While we discussed hash functions as keyed collections, in practice
people often think of a hash function as being a fixed keyless function.
However, this is because most practical constructions involve some
hardwired standardized constants (often known as IV) that can be
thought of as a choice of the key.

Practical constructions of cryptographic hash functions start
with a basic block which is known as a compression function
ℎ ∶ {0, 1}2𝑛 → {0, 1}𝑛. The function 𝐻 ∶ {0, 1}∗ → {0, 1}𝑛 is defined
as 𝐻(𝑚1,… ,𝑚𝑡) = ℎ(ℎ(ℎ(𝑚1, IV),𝑚2),⋯ ,𝑚𝑡) when the message is
composed of 𝑡 blocks (and we can pad it otherwise). See Fig. 7.3. This
construction is known as the Merkle-Damgard construction and we
know that it does preserve collision resistance:

Figure 7.3: The Merkle-Damgard construction converts
a compression function ℎ ∶ {0, 1}2𝑛 → {0, 1}𝑛
into a hash function that maps strings of arbitrary
length into {0, 1}𝑛. The transformation preserves
collision resistance but does not yield a PRF even if ℎ
was pseudorandom. Hence for many applications it
should not be used directly but rather composed with
a transformation such as HMAC.

Theorem 7.5 — Merkle-Damgard preserves collision resistance. Let 𝐻 be
constructed from ℎ as above. Then given two messages 𝑚 ≠ 𝑚′ ∈
{0, 1}𝑡𝑛 such that 𝐻(𝑚) = 𝐻(𝑚′) we can efficiently find two mes-
sages 𝑥 ≠ 𝑥′ ∈ {0, 1}2𝑛 such that ℎ(𝑥) = ℎ(𝑥′).

Proof. The intuition behind the proof is that if ℎ was invertible then
we could invert 𝐻 by simply going backwards. Thus in principle if
a collision for 𝐻 exists then so does a collision for ℎ. Now of course
this is a vacuous statement since both ℎ and 𝐻 shrink their inputs and
hence clearly have collisions. But we want to show a constructive proof
for this statement that will allow us to transform a collision in 𝐻 to
a collision in ℎ. This is very simple. We look at the computation of
𝐻(𝑚) and 𝐻(𝑚′) and at the first block in which the inputs differ but
the output is the same (there must be such a block). This block will
yield a collision for ℎ.

■



hash functions, random oracles, and bitcoin 171

7 For example, the Boneh-Shoup book quotes process-
ing times of up to 255MB/sec on a 1.83 Ghz Intel Core
2 processor, which is more than enough to handle not
just Harvard’s network but even Lamar College’s.

7.4.1 Practical Random-ish Functions
In practice we want much more than collision resistance from our
hash functions. In particular we often would like them to be PRF’s as
well. Unfortunately, the Merkle-Damgard construction is not a PRF
even when IV is random and secret. This is because we can perform
a length extension attack on it. Even if we don’t know IV, given 𝑦 =
𝐻𝐼𝑉 (𝑚1,… ,𝑚𝑡) and a block 𝑚𝑡+1 we can compute 𝑦′ = ℎ(𝑦,𝑚𝑡+1)
which equals 𝐻𝐼𝑉 (𝑚1,… ,𝑚𝑡+1).

One fix for this is to use a different IV′ in the end of the encryption.
That is, we define:

𝐻𝐼𝑉 ,IV′(𝑚1,… ,𝑚𝑡) = ℎ(IV′,𝐻𝐼𝑉 (𝑚1,… ,𝑚𝑡))
A variant of this construction (where IV′ is obtained as some sim-

ple function of IV) is known as HMAC and it can be shown to be a
pseudorandom function under some pseudorandomness assump-
tions on the compression function ℎ. It is very widely implemented.
In many cases where I say “use a cryptographic hash function” in this
course I actually mean to use an HMAC like construction that can be
conjectured to give at least a PRF if not stronger “random oracle”-like
properties.

The simplest implementation for a compression function is to take
a block cipher with an 𝑛 bit key and an 𝑛 bit message and then simply
define ℎ(𝑥1,… , 𝑥2𝑛) = 𝐸𝑥𝑛+1,…,𝑥2𝑛

(𝑥1,… , 𝑥𝑛). A more common vari-
ant is known as Davies-Meyer where we also XOR the output with
𝑥𝑛+1,…𝑥2𝑛. In practice people often use tailor made block ciphers that
are designed for some efficiency or security concerns.

7.4.2 Some History
Almost all practically used hash functions are based on the Merkle-
Damgard paradigm. Hash functions are designed to be extremely
efficient7 which also means that they are often at the “edge of insecu-
rity” and indeed have fallen over the edge.

In 1990 Ron Rivest proposed MD4, which was already showing
weaknesses in 1991, and a full collision was found in 1995. Even faster
attacks have been since found and MD4 is considered completely
insecure.

In response to these weaknesses, Rivest designed MD5 in 1991. A
weakness was shown for it in 1996 and a full collision was shown in
2004. Hence it is now also considered insecure.

In 1993 the National Institute of Standards proposed a standard
for a hash function known as the Secure Hash Algorithm (SHA), which
had quite a few similarities with the MD4 and MD5 functions. This
function was known as SHA-0, and the standard was replaced in
1995 with SHA-1, which includes an extra “mixing” (i.e., bit rotation)
operation. At the time no explanation was given for this change, but

http://www.huffingtonpost.com/2014/06/27/colleges-fastest-internet-speed-infographic_n_5536834.html


172 an intensive introduction to cryptography

SHA-0 was later found to be insecure. In 2002 a variant with longer
output, known as SHA-256, was added (as well as some others). In
2005, following the MD5 collision, significant weaknesses were shown
in SHA-1. In 2017, a full SHA-1 collision was found. Today SHA-1 is
considered insecure and SHA-256 is recommended.

Given the weaknesses in MD-5 and SHA-1, NIST started a competi-
tion in 2006 for a new hashing standard, based on functions that seem
sufficiently different from the MD5/SHA-0/SHA-1 family. (SHA-256
is unbroken but it seems too close for comfort to those other systems.)
The hash function Keccak was selected as the new standard SHA-3 in
August of 2015.

7.4.3 The NSA and Hash Functions
The NSA is the world’s largest employer of mathematicians, and is
very heavily invested in cryptographic research. It seems quite pos-
sible that they devote far more resources to analyzing symmetric
primitives such as block ciphers and hash functions than the open re-
search community. Indeed, the history above suggests that the NSA
has consistently discovered attacks on hash functions before the cryp-
tographic community (and the same holds for the differential crypt-
analysis technique for block ciphers). That said, despite the “mythic”
powers that are sometimes ascribed to the NSA, this history suggests
that they are ahead of the open community, but not so much ahead,
discovering attacks on hash functions about 5 years or so before they
appear in the open literature.

There are a few ways we can get “insider views” to the NSA’s
thinking. Some such insights can be obtained from the Snowden
documents. The Flame malware was discovered in Iran in 2012 after
operating since at least 2010. It used an MD5 collision to achieve its
goals. Such a collision was known in the open literature since 2008,
but Flame used a different variant that was unknown in the litera-
ture. For this reason it is suspected that it was designed by a western
intelligence agency.

Another insight into NSA’s thoughts can be found in pages 12-19 of
NSA’s internal Cryptolog newsletter which was recently declassified;
one can find there a rather entertaining and opinionated (or obnox-
ious, depending on your point of view) review of the CRYPTO 1992
conference. In page 14 the author remarks that certain weaknesses of
MD5 demonstrated in the conference are unlikely to be extended to
the full version, which suggests that the NSA (or at least the author)
was not aware of the MD5 collisions at the time. (The full archive of
the cryptolog newsletter makes for some interesting reading!)

https://goo.gl/jdqUX9
https://goo.gl/Bx1bu2
https://en.wikipedia.org/wiki/Flame_(malware)
https://cryptome.org/2013/03/cryptologs/cryptolog_126.pdf
https://cryptome.org/2013/03/cryptologs/00-cryptolog-index.htm


hash functions, random oracles, and bitcoin 173

7.4.4 Cryptographic vs Non-Cryptographic Hash Functions
Hash functions are of course also widely used for non-cryptographic ap-
plications such as building hash tables and load balancing. For these
applications people often use linear hash functions known as cyclic
redundancy codes (CRC). Note however that even in those seemingly
non-cryptographic applications, an adversary might cause signifi-
cant slowdown to the system if he can generate many collisions. This
can and has been used to obtain denial of service attacks. As a rule of
thumb, if the inputs to your system might be generated by someone
who does not have your best interests at heart, you’re better off using a
cryptographic hash function.

7.5 READING COMPREHENSION EXERCISES

I recommend students do the following exercises after reading the
lecture. They do not cover all material, but can be a good way to check
your understanding.

Exercise 7.1 Choose the strongest true statement from the following op-
tions. (That is, choose the mathematical statement from these options
that is both true, and one can derive the other true statements as direct
corollaries.)

a. For every function ℎ ∶ {0, 1}1024 → {0, 1}128 there exist two strings
𝑥 ≠ 𝑥′ in {0, 1}1024 such that ℎ(𝑥) = ℎ(𝑥′).

b. There is a randomized algorithm 𝐴 that makes at most 2128 queries
to a given black box computing a function ℎ ∶ {0, 1}1024 → {0, 1}128
that with probability at least 0.9, 𝐴 outputs a pair 𝑥 ≠ 𝑥′ in
{0, 1}1024 such that ℎ(𝑥) = ℎ(𝑥′).

c. There is a randomized algorithm 𝐴 that makes at most 100 ⋅ 264
queries to a given black box computing a function ℎ ∶ {0, 1}1024 →
{0, 1}128 that with probability at least 0.9, 𝐴 outputs a pair 𝑥 ≠ 𝑥′ in
{0, 1}1024 such that ℎ(𝑥) = ℎ(𝑥′).

d. There is a randomized algorithm 𝐴 that makes at most 0.01 ⋅ 264
queries to a given black box computing a function ℎ ∶ {0, 1}1024 →
{0, 1}128 that with probability at least 0.9, 𝐴 outputs a pair 𝑥 ≠ 𝑥′ in
{0, 1}1024 such that ℎ(𝑥) = ℎ(𝑥′).

■

Exercise 7.2 Suppose that ℎ ∶ {0, 1}1024 → {0, 1}128 is chosen at random.
If 𝑦 is chosen at random in {0, 1}128 and we pick 𝑥1,… , 𝑥𝑡 indepen-
dently at random in {0, 1}1024, how large does 𝑡 need to be so that the
probability that there is some 𝑥𝑖 such that ℎ(𝑥𝑖) = 𝑦 is at least 1/2.
(Pick the answer with the closest estimate):

http://arstechnica.com/business/2011/12/huge-portions-of-web-vulnerable-to-hashing-denial-of-service-attack/


174 an intensive introduction to cryptography

a. 21024

b. 2256

c. 2128

d. 264

■

Exercise 7.3 Suppose that a message authentication code (𝑆, 𝑉 ) where
Alice and Bob use as one of its components a function ℎ as a black box
is secure when ℎ is a random function. Is it still secure when Alice and
Bob uses a hash function ℎ that is chosen from some PRF collection
and whose key is given to the adversary?

a. It can sometimes be secure and sometimes insecure.

b. It is always secure.

c. It is always insecure.

■


