Linear Bandits

Sham M. Kakade

Outline

(1) Linear Bandits

- Setting
- LinUCB and An Optimal Regret Bound
(2) Analysis
- Regret Analysis
- Confidence Analysis

Handling Large Actions Spaces

- On each round, we must choose a decision $x_{t} \in D \subset R^{d}$.

Handling Large Actions Spaces

- On each round, we must choose a decision $x_{t} \in D \subset R^{d}$.
- Obtain a reward $r_{t} \in[-1,1]$, where

$$
\begin{aligned}
& \mathbb{E}\left[r_{t} \mid x_{t}=\right.x]=\mu^{\star} \cdot x \in[-1,1], \\
&=\mu^{*} \cdot \overrightarrow{\phi(x)}, \mu^{*} \text { - unknown } \\
& \text { weight } \\
& \text { vertor. }
\end{aligned}
$$

Handling Large Actions Spaces

- On each round, we must choose a decision $x_{t} \in D \subset R^{d}$.
- Obtain a reward $r_{t} \in[-1,1]$, where

$$
\mathbb{E}\left[r_{t} \mid x_{t}=x\right]=\mu^{\star} \cdot x \in[-1,1],
$$

- so the the conditional expectation of r_{t} is linear)
- Also, we have the noise sequence,

$$
\eta_{t}=r_{t}-\mu^{\star} \cdot x_{t}
$$

is i.i.d noise.
model due to Abe \& Long '99

Our Objective

If $x_{0}, \ldots x_{T-1}$ are our decisions, then our cumulative regret is

$$
R_{T}=\left(\mu^{\star} \cdot x^{\star}\right)-\sum_{t=0}^{T-1} \mu^{\star} \cdot x_{t}
$$

where $x^{\star} \in D$ is an optimal decision for μ^{\star}, i.e.

$$
x^{\star} \in \operatorname{argmax}_{x \in D} \mu^{\star} \cdot x
$$

Outline

(9) Linear Bandits

- Setting
- LinUCB and An Optimal Regret Bound
(2) Analysis
- Regret Analysis
- Confidence Analysis

LinUCB \& The "Confidence Ball"

- After t rounds, define our uncertainty region BALL_{t} : with center, $\widehat{\mu}_{t}$, and shape, Σ_{t}, using the λ-regularized least squares solution:

$$
\begin{aligned}
& \widehat{\mu}_{t}=\arg \min _{\mu} \sum_{\tau=0}^{t-1}\left\|\mu \cdot x_{\tau}-r_{\tau}\right\|_{2}^{2}+\lambda\|\mu\|_{2}^{2} \\
& \Sigma_{t}=\lambda I+\sum_{\tau=0}^{t-1} x_{\tau} x_{\tau}^{\top}, \text { with } \Sigma_{0}=\lambda I \quad, \quad \begin{array}{l}
\text { cont. } \\
\hat{\mu}_{x} x-\mu^{*} \cdot x
\end{array} \\
&\left.\left.\operatorname{BALL}_{t} \forall\right\}\left(\hat{\mu}_{t}-\hat{\mu}^{\top}\right)^{\top} \Sigma_{t}^{-1}\left(\hat{\mu}_{t}-\vec{\mu}^{?}\right) \leq \beta_{t}\right\},
\end{aligned}
$$

where β_{t} is a parameter of the algorithm.

LinUCB \& The "Confidence Ball"

- After t rounds, define our uncertainty region BALL_{t} : with center, $\widehat{\mu}_{t}$, and shape, Σ_{t}, using the λ-regularized least squares solution:

$$
\begin{gathered}
\widehat{\mu}_{t}=\arg \min _{\mu} \sum_{\tau=0}^{t-1}\left\|\mu \cdot x_{\tau}-r_{\tau}\right\|_{2}^{2}+\lambda\|\mu\|_{2}^{2} \\
\Sigma_{t}=\lambda I+\sum_{\tau=0}^{t-1} x_{\tau} x_{\tau}^{\top}, \text { with } \Sigma_{0}=\lambda I \\
\text { BAR } \mathrm{k}_{2} \nmid\left\{\left(\widehat{\mu}_{t}-\mu^{\circledast}\right)^{\top} \Sigma_{t}^{-1}\left(\widehat{\mu}_{t}-\mu^{*}\right) \leq \beta_{t}\right\},
\end{gathered}
$$

where β_{t} is a parameter of the algorithm.

- LinUCB: For $t=0,1, \ldots$
(1) Execute $x_{t}=\operatorname{argmax}_{x \in D}$ max $_{\mu \in \text { BALL }_{t}} \mu \cdot x$
(2) Observe the reward r_{t} and update BALL_{t+1}.

LinUCB Regret Bound

Sublinear regret: $R_{T} \leq O^{\star}(d \sqrt{T})$ poly dependence on d, no dependence on the cardinality $|D|$.

LinUCB Regret Bound

Sublinear regret: $R_{T} \leq O^{\star}(d \sqrt{T})$
poly dependence on d, no dependence on the cardinality $|D|$.
Theorem (Dani, Hayes, K. '09)
Suppose: bounded noise $\left|\eta_{t}\right| ;\left\|\mu^{\star}\right\| \leq W$; and $\|x\| \leq B$, for $x \in D$.
Set $\lambda=\sigma^{2} / W^{2}$ and $\beta_{t}:=c_{1} \sigma^{2}\left(d \log \left(1+\frac{T B^{2} W^{2}}{d}\right)+\log (1 / \delta)\right)$.
With probability greater than $1-\delta$, that for all $t \geq 0$,

$$
R_{T} \leq c_{2} \sigma \sqrt{T}\left(d \log \left(1+\frac{T B^{2} W^{2}}{d \sigma^{2}}\right)+\log (4 / \delta)\right)
$$

where c_{1}, c_{2} are absolute constants.

for hounded rowards.

Outline

(1) Linear Bandits

- Setting
- LinUCB and An Optimal Regret Bound
(2) Analysis
- Regret Analysis
- Confidence Analysis

Two Key Lemma in the Proof

Lemma

(Confidence) Let $\delta>0$. We have that $\operatorname{Pr}\left(\forall t, \mu^{\star} \in \mathrm{BALL}_{t}\right) \geq 1-\delta$.

Two Key Lemma in the Proof

Lemma

(Confidence) Let $\delta>0$. We have that $\operatorname{Pr}\left(\forall t, \mu^{\star} \in \mathrm{BALL}_{t}\right) \geq 1-\delta$.

Lemma

(Sum of Squares Regret Bound) Define:

> thialc of

$$
\operatorname{regret}_{t}=\mu^{\star} \cdot x^{\star}-\mu^{\star} \cdot x_{t}
$$

Suppose $\beta_{t} \geq 1$ and β_{t} is increasing; and $\mu^{\star} \in \operatorname{BALL}$ for all t. Then

$$
\sum_{t=0}^{T-1} \operatorname{regret}_{t}^{2} \leq 4 \beta_{T} d \log \left(1+\frac{T B^{2}}{d \lambda}\right)
$$

Completing the Proof

Proof:[Proof of Theorem 1] With the two previous Lemmas, along with the Cauchy-Schwarz inequality, we have, with probability at least $1-\delta$,

$$
R_{T}=\sum_{t=0}^{T-1} \operatorname{regret}_{t} \leq \sqrt{T \sum_{t=0}^{T-1} \operatorname{regret}_{t}^{2}} \leq \sqrt{4 T \beta_{T} d \log \left(1+\frac{T B^{2}}{d \lambda}\right)} .
$$

The remainder of the proof follows from our chosen value of β_{T}.

Outline

(9) Linear Bandits

- Setting
- LinUCB and An Optimal Regret Bound
(2) Analysis
- Regret Analysis
- Confidence Analysis
"Width" of Confidence Ball
pointarise confidence
Lemma
Let $x \in D$. If $\mu \in \mathrm{BALL}_{t}$ and $x \in D$. Then

$$
\left|\left(\mu-\widehat{\mu}_{t}\right)^{\top} x\right| \leq \sqrt{\beta_{t} x^{\top} \Sigma_{t}^{-1} x}
$$

"Width" of Confidence Ball

Lemma

Let $x \in D$. If $\mu \in \mathrm{BALL}_{t}$ and $x \in D$. Then

$$
\left|\left(\mu-\widehat{\mu}_{t}\right)^{\top} x\right| \leq \sqrt{\beta_{t} x^{\top} \Sigma_{t}^{-1} x}
$$

Proof: Triangle ineq. + def of BALL_{t}

"Width" of Confidence Ball

Lemma

Let $x \in D$. If $\mu \in \mathrm{BALL}_{t}$ and $x \in D$. Then

$$
\left|\left(\mu-\widehat{\mu}_{t}\right)^{\top} x\right| \leq \sqrt{\beta_{t} x^{\top} \Sigma_{t}^{-1} x}
$$

Proof: Triangle ineq. + def of BALL ${ }_{t}$
By Cauchy-Schwarz, we have:

$$
\begin{aligned}
& \left|\left(\mu-\widehat{\mu}_{t}\right)^{\top} x\right|=\left|\left(\mu-\widehat{\mu}_{t}\right)^{\top} \Sigma_{t}^{1 / 2} \Sigma_{t}^{-1 / 2} x\right|=\left|\left(\Sigma_{t}^{1 / 2}\left(\mu-\widehat{\mu}_{t}\right)\right)^{\top} \Sigma_{t}^{-1 / 2} x\right| \\
& \leq\left\|\Sigma_{t}^{1 / 2}\left(\mu-\widehat{\mu}_{t}\right)\right\|\left\|\Sigma_{t}^{-1 / 2} x\right\|=\left\|\Sigma_{t}^{1 / 2}\left(\mu-\widehat{\mu}_{t}\right)\right\| \sqrt{x^{\top} \Sigma_{t}^{-1} x} \leq \sqrt{\beta_{t} x^{\top} \Sigma_{t}^{-1} x}
\end{aligned}
$$

where the last inequality holds since $\mu \in \operatorname{BALL}_{t}$.

Instantaneous Regret Lemma

Define

$$
w_{t}:=\sqrt{x_{t}^{\top} \Sigma_{t}^{-1} x_{t}}
$$

which is the "normalized width" at time t in the direction of our decision.

Instantaneous Regret Lemma

Define

$$
w_{t}:=\sqrt{x_{t}^{\top} \Sigma_{t}^{-1} x_{t}}
$$

which is the "normalized width" at time t in the direction of our decision.

Lemma

Fix $t \leq T$. If $\mu^{\star} \in \mathrm{BALL}_{t}$, then

$$
\operatorname{regret}_{t} \leq 2 \min \left(\sqrt{\beta_{t}} w_{t}, 1\right) \leq 2 \sqrt{\beta_{T}} \min \left(w_{t}, 1\right)
$$

Instantaneous Regret Lemma

Define

$$
w_{t}:=\sqrt{x_{t}^{\top} \Sigma_{t}^{-1} x_{t}}
$$

which is the "normalized width" at time t in the direction of our decision.

Lemma

Fix $t \leq T$. If $\mu^{\star} \in \mathrm{BALL}_{t}$, then

$$
\operatorname{regret}_{t} \leq 2 \min \left(\sqrt{\beta_{t}} w_{t}, 1\right) \leq 2 \sqrt{\beta_{T}} \min \left(w_{t}, 1\right)
$$

Proof: Due to"optimism".

Instantaneous Regret Lemma

Define

$$
w_{t}:=\sqrt{x_{t}^{\top} \Sigma_{t}^{-1} x_{t}}
$$

which is the "normalized width" at time t in the direction of our decision.

Lemma

Fix $t \leq T$. If $\mu^{\star} \in \mathrm{BALL}_{t}$, then

$$
\operatorname{regret}_{t} \leq 2 \min \left(\sqrt{\beta_{t}} w_{t}, 1\right) \leq 2 \sqrt{\beta_{T}} \min \left(w_{t}, 1\right)
$$

Proof: Due to"optimism".
Let $\widetilde{\mu} \in \mathrm{BALL}_{t}$ denote the vector which minimizes the dot product $\widetilde{\mu}^{\top} x_{t}$. By choice of $x_{t}, \tilde{\mu}^{\top} x_{t}=\max _{\mu \in B A L L_{t}} \max _{x \in D} \mu^{\top} x \geq\left(\mu^{\star}\right)^{\top} x^{*}$, where the inequality used the hypothesis $\mu^{\star} \in \mathrm{BALL}_{t}$. Hence,

$$
\begin{aligned}
\text { regret }_{t} & =\left(\mu^{\star}\right)^{\top} x^{*}-\left(\mu^{\star}\right)^{\top} x_{t} \leq\left(\widetilde{\mu}-\mu^{\star}\right)^{\top} x_{t} \\
& =\left(\widetilde{\mu}-\widehat{\mu}_{t}\right)^{\top} x_{t}+\left(\widehat{\mu}_{t}-\mu^{\star}\right)^{\top} x_{t} \leq 2 \sqrt{\beta_{t}} w_{t}
\end{aligned}
$$

where the last step follows from the "width" Lemmasince $\widetilde{\mu}$ and μ^{\star} are

Geometric Argument: Part 1

The next two lemmas give us 'geometric' potential function argument, where can bound the sum of widths independently of the choices made by the algorithm.

Geometric Argument: Part 1

The next two lemmas give us 'geometric' potential function argument, where can bound the sum of widths independently of the choices made by the algorithm.

Lemma

We have:

$$
\operatorname{det} \Sigma_{T}=\operatorname{det} \Sigma_{0} \prod_{t=0}^{T-1}\left(1+w_{t}^{2}\right)
$$

Geometric Argument: Part 1

The next two lemmas give us 'geometric' potential function argument, where can bound the sum of widths independently of the choices made by the algorithm.

Lemma

We have:

$$
\operatorname{det} \Sigma_{T}=\operatorname{det} \Sigma_{0} \prod_{t=0}^{T-1}\left(1+w_{t}^{2}\right)
$$

Proof: By the definition of Σ_{t+1}, we have

$$
\begin{aligned}
& \operatorname{det} \Sigma_{t+1}=\operatorname{det}\left(\Sigma_{t}+x_{t} x_{t}^{\top}\right)=\operatorname{det}\left(\Sigma_{t}^{1 / 2}\left(I+\Sigma_{t}^{-1 / 2} x_{t} x_{t}^{\top} \Sigma_{t}^{-1 / 2}\right) \Sigma_{t}^{1 / 2}\right) \\
& \quad=\operatorname{det}\left(\Sigma_{t}\right) \operatorname{det}\left(I+\Sigma_{t}^{-1 / 2} x_{t}\left(\Sigma_{t}^{-1 / 2} x_{t}\right)^{\top}\right)=\operatorname{det}\left(\Sigma_{t}\right) \operatorname{det}\left(I+v_{t} v_{t}^{\top}\right)
\end{aligned}
$$

where $v_{t}:=\Sigma_{t}^{-1 / 2} x_{t}$. Now observe that $v_{t}^{\top} v_{t}=w_{t}^{2}$ and \ldots

Geometric Argument: Part 2

Lemma

For any sequence $x_{0}, \ldots x_{T-1}$ such that, for $t<T,\left\|x_{t}\right\|_{2} \leq B$, we have:

$$
\log \left(\operatorname{det} \Sigma_{T-1} / \operatorname{det} \Sigma_{0}\right)=\log \operatorname{det}\left(1+\frac{1}{\lambda} \sum_{t=0}^{T-1} x_{t} X_{t}^{\top}\right) \leq d \log \left(1+\frac{T B^{2}}{d \lambda}\right) .
$$

Geometric Argument: Part 2

Lemma

For any sequence $x_{0}, \ldots x_{T-1}$ such that, for $t<T,\left\|x_{t}\right\|_{2} \leq B$, we have:
$\log \left(\operatorname{det} \Sigma_{T-1} / \operatorname{det} \Sigma_{0}\right)=\log \operatorname{det}\left(1+\frac{1}{\lambda} \sum_{t=0}^{T-1} x_{t} X_{t}^{\top}\right) \leq d \log \left(1+\frac{T B^{2}}{d \lambda}\right)$.
Proof: Denote the eigenvalues of $\sum_{t=0}^{T-1} x_{t} x_{t}^{\top}$ as $\sigma_{1}, \ldots \sigma_{d}$, and note:

$$
\sum_{i=1}^{d} \sigma_{i}=\operatorname{Trace}\left(\sum_{t=0}^{T-1} x_{t} x_{t}^{T}\right)=\sum_{t=0}^{T-1}\left\|x_{t}\right\|^{2} \leq T B^{2} .
$$

Using the AM-GM inequality,

$$
\begin{aligned}
& \log \operatorname{det}\left(1+\frac{1}{\lambda} \sum_{t=0}^{T-1} x_{t} x_{t}^{\top}\right)=\log \left(\prod_{i=1}^{d}\left(1+\sigma_{i} / \lambda\right)\right) \quad A M-6 M \\
& \left.=d \log \left(\prod_{i=1}^{d}\left(1+\sigma_{i} / \lambda\right)\right)^{1 / d}\right) \leq d \log \left(\frac{1}{d} \sum_{i=1}^{d}\left(1+\sigma_{i} / \lambda\right)\right) \leq d \log \left(1+\frac{T B^{2}}{d \lambda}\right)
\end{aligned}
$$

Proving "sum of squares regret" Lemma

Proof:Assume $\mu^{\star} \in \mathrm{BALL}_{t}$ for all t. We have:

$$
\begin{aligned}
& \sum_{t=0}^{T-1} \operatorname{regret}_{t}^{2} \leq \sum_{t=0}^{T-1} 4 \beta_{t} \min \left(w_{t}^{2}, 1\right) \leq 4 \beta_{T} \sum_{t=0}^{T-1} \min \left(w_{t}^{2}, 1\right) \\
& \quad \leq 4 \beta_{T} \sum_{t=0}^{T-1} \ln \left(1+w_{t}^{2}\right) \leq 4 \beta_{T} \log \left(\operatorname{det} \Sigma_{T-1} / \operatorname{det} \Sigma_{0}\right) \\
& \quad=4 \beta_{T} d \log \left(1+\frac{T B^{2}}{d \lambda}\right)
\end{aligned}
$$

where the first inequality follow from by Lemma 5; the second from that β_{t} is an increasing function of t; the third uses that for $0 \leq y \leq 1$, $\ln (1+y) \geq y / 2$; the final two inequalities follow by Lemmas 6 and 7 .

Outline

(9) Linear Bandits

- Setting
- LinUCB and An Optimal Regret Bound
(2) Analysis
- Regret Analysis
- Confidence Analysis

Self-Normalizing Sum

Lemma (Self-Normalized Bound for Vector-Valued Martingales)

(Abassi et. al '11) Suppose $\left\{\varepsilon_{i}\right\}_{i=1}^{\infty}$ are mean zero random variables (can be generalized to martingales), and ε_{i} is bounded by σ. Let $\left\{X_{i}\right\}_{i=1}^{\infty}$ be a stochastic process. Define $\Sigma_{t}=\Sigma_{0}+\sum_{i=1}^{t} X_{i} X_{i}^{\top}$. With probability at least $1-\delta$, we have for all $t \geq 1$:

$$
\left\|\sum_{i=1}^{t} X_{i} \varepsilon_{i}\right\|_{\Sigma_{t}^{-1}}^{2} \leq \sigma^{2} \log \left(\frac{\operatorname{det}\left(\Sigma_{t}\right) \operatorname{det}\left(\Sigma_{0}\right)^{-1}}{\delta^{2}}\right) .
$$

(This is a general version of the Self-Normalized Sum argument in [Dani, Hayes, K. '09]).

Confidence [Proof of Lemma 2]

Proof: Since $r_{\tau}=x_{\tau} \cdot \mu^{\star}+\eta_{\tau}$, we have:

$$
\begin{aligned}
& \widehat{\mu}_{t}-\mu^{\star}=\Sigma_{t}^{-1} \sum_{\tau=0}^{t-1} r_{\tau} x_{\tau}-\mu^{\star}=\Sigma_{t}^{-1} \sum_{\tau=0}^{t-1} x_{\tau}\left(x_{\tau} \cdot \mu^{\star}+\eta_{\tau}\right)-\mu^{\star} \\
& =\Sigma_{t}^{-1}\left(\sum_{\tau=0}^{t-1} x_{\tau}\left(x_{\tau}\right)^{\top}\right) \mu^{\star}-\mu^{\star}+\Sigma_{t}^{-1} \sum_{\tau=0}^{t-1} \eta_{\tau} x_{\tau} \\
& =\lambda \Sigma_{t}^{-1} \mu^{\star}+\Sigma_{t}^{-1} \sum_{\tau=0}^{t-1} \eta_{\tau} x_{\tau}
\end{aligned}
$$

By the triangle inequality,

$$
\begin{aligned}
& \sqrt{\left(\widehat{\mu}_{t}-\mu^{\star}\right)^{\top} \Sigma_{t}\left(\widehat{\mu}_{t}-\mu^{\star}\right)} \leq\left\|\lambda \Sigma_{t}^{-1 / 2} \mu^{\star}\right\|+\left\|\Sigma_{t}^{-1 / 2} \sum_{\tau=0}^{t-1} \eta_{\tau} x_{\tau}\right\| \\
& \leq \sqrt{\lambda}\left\|\mu^{\star}\right\| \quad+?
\end{aligned}
$$

How can we bound "??" To be continued...

Continued... [Proof of Lemma 2]

Proof:

$$
\begin{aligned}
\left(\widehat{\mu}_{t}-\mu^{\star}\right)^{\top} \Sigma_{t}\left(\widehat{\mu}_{t}-\mu^{\star}\right) & \leq\left\|\lambda \Sigma_{t}^{-1 / 2} \mu^{\star}\right\|+\left\|\Sigma_{t}^{-1 / 2} \sum_{\tau=0}^{t-1} \eta_{\tau} x_{\tau}\right\| \\
& \leq \sqrt{\lambda}\left\|\mu^{\star}\right\|+\sqrt{2 \sigma^{2} \log \left(\operatorname{det}\left(\Sigma_{t}\right) \operatorname{det}\left(\Sigma^{0}\right)^{-1} / \delta_{t}\right)}
\end{aligned}
$$

We seek to lower bound $\operatorname{Pr}\left(\forall t, \mu^{\star} \in \mathrm{BALL}_{t}\right)$. Assign failure probability $\delta_{t}=\left(3 / \pi^{2}\right) / t^{2}$ for the t-th event, which gives us:

$$
\begin{aligned}
1 & -\operatorname{Pr}\left(\forall t, \mu^{\star} \in \mathrm{BALL}_{t}\right)=\operatorname{Pr}\left(\exists t, \mu^{\star} \notin \mathrm{BALL}_{t}\right) \leq \sum_{t=1}^{\infty} \operatorname{Pr}\left(\mu^{\star} \notin \mathrm{BALL}_{t}\right) \\
& <\sum_{t=1}^{\infty}\left(1 / t^{2}\right)\left(3 / \pi^{2}\right)=1 / 2
\end{aligned}
$$

This along with Lemma 7 completes the proof.

