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Markov Decision Processes: 
a framework for RL

• A policy:  
π : States → Actions

• Execute  to obtain a trajectory: π
s0, a0, r0, s1, a1, r1…sH−1, aH−1, rH−1

• Cumulative -step reward: 

	 ,    

H
Vπ

H(s) = #π [
H−1

∑
t=0

rt s0 = s] Qπ
H(s, a) = #π [

H−1

∑
t=0

rt s0 = s, a0 = a]
• Goal: Find a policy  that maximizes our value  from . 

Episodic setting: We start at ; act for  steps; repeat…
π Vπ(s0) s0

s0 H
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Challenges in RL

1. Exploration 
(the environment may be 
unknown)

2. Credit assignment problem 
(due to delayed rewards)

3. Large state/action spaces: 
hand state: joint angles/velocities 
cube state: configuration  
actions: forces applied to actuators

Dexterous Robotic Hand Manipulation 
OpenAI,  ‘19
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Part-0:  
A Whirlwind Tour of Generalization  

from Supervised Learning to RL
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Generalization is possible in the IID supervised learning setting!
 
To get -close to best in hypothesis class  , we need # of samples that is:ϵ ℱ
• “Occam’s Razor” Bound (finite hypothesis class): need O(log |ℱ | /ϵ2)
• Various Improvements:
• VC dim ; Classification (margin  bounds): ;  

Linear regression: 
O(VC(ℱ)/ϵ2) O(margin)/ϵ2)

O(dimension/ϵ2)
• Deep Learning:  the algorithm also determines the complexity control  

The key idea in SL: data reuse
With a training set, we can simultaneously evaluate the loss of all hypotheses in our 
class!
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Sample Efficient RL in  
the Tabular Case 
(no generalization here)
• S = #states, A = #actions, H = #horizon
• We have an (unknown) MDP.
• Thm: [Kearns & Singh ‘98] In the episodic setting,  

  samples suffice to find  an -opt policy. 
Key idea: optimism + dynamic programming 
poly(S, A, H,1/ϵ) ϵ

• Lots improvements on the rate:  
[Brafman& Tennenholtz ’02][K. '03][Auer+ ‘09] [Agrawal, Jia ’17]  
[Azar+ ‘13],[Dann & Brunskill ‘15]

• Provable Q-learning (+bonus):  
[Strehl+ (2006)], [Szita & Szepesvari ‘10],[Jin+ ‘18]
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I: Provable Generalization in RL 
Q1: Can we find an -opt policy with no  dependence?ϵ S
• How can we reuse data to estimate the value of all policies in a policy class ? 

Idea: Trajectory tree algo  
dataset collection: uniformly at random choose actions for all  steps in an episode.  
estimation: uses importance sampling to evaluate every   

ℱ

H
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• How can we reuse data to estimate the value of all policies in a policy class ? 

Idea: Trajectory tree algo  
dataset collection: uniformly at random choose actions for all  steps in an episode.  
estimation: uses importance sampling to evaluate every   

ℱ

H
f ∈ ℱ

• Thm:[Kearns, Mansour, & Ng ‘00] 
To find an -best in class policy, the trajectory tree algo uses  samplesϵ O(AH log( |ℱ | /ϵ2))
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I: Provable Generalization in RL 
Q1: Can we find an -opt policy with no  dependence?ϵ S
• How can we reuse data to estimate the value of all policies in a policy class ? 

Idea: Trajectory tree algo  
dataset collection: uniformly at random choose actions for all  steps in an episode.  
estimation: uses importance sampling to evaluate every   

ℱ

H
f ∈ ℱ

• Thm:[Kearns, Mansour, & Ng ‘00] 
To find an -best in class policy, the trajectory tree algo uses  samplesϵ O(AH log( |ℱ | /ϵ2))
• Only  dependence on hypothesis class size.log( |ℱ | )
• There are VC analogues as well. 

• Can we avoid the  dependence to find an an -best-in-class policy?  
Agnostically, NO! 
Proof: Consider a binary tree with -policies and a sparse reward at a leaf node.

2H ϵ

2H
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II: Provable Generalization in RL


• Q2: Can we find an -opt policy with no  dependence and 
 samples?

ϵ S, A
poly(H,1/ϵ, "complexity measure")
•Agnostically/best-in-class? NO.
•With various stronger assumptions, of course. 
 

What is the nature of the assumptions under which 
generalization in RL is possible? 

(what is necessary? what is sufficient?)

mile
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Today’s Lecture
What are necessary representational and distributional conditions that permit  
provably sample-efficient offline reinforcement learning?  

• Part I: bandits & linear bandits 
(let’s start with horizon  case) H = 1

• Part II: Lower bounds: 
Linear realizability: natural conditions to impose 
Is RL possible? 

• Part III: Upper bounds: 
Are there unifying conditions that are sufficient?



Part-I:  
Bandits (the  case) 

(Let’s set the stage for RL!)
H = 1
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Multi-armed bandits
How should we allocate  

T tokens to  “arms”  
to maximize our return? 

[Robins ’52, Gittins’79, Lai & Robbins ‘85 …]
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Multi-armed bandits

•Very successful algo when  is small.A
•What can we do when the number or arms  is large?A

How should we allocate  
T tokens to  “arms”  

to maximize our return? 
[Robins ’52, Gittins’79, Lai & Robbins ‘85 …]

A

f
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    Bandits 

 
 

•decision: pull an arm

13

    Linear (RKHS) Bandits 
 
 
 

•decision: choose some  
•e.g. 

x ∈ &
x ∈ R

Dealing with the large action case

• widely used generalization: The “linear bandit” model [Abe & Long+  ’99] 
successful in many applications: scheduling, ads…

• decision: , reward: , reward model: 
	 	

xt rt
rt = f(xt) + noise, f(x) = w⋆ ⋅ ϕ(x)

• Hypothesis class  is set of linear/RKHS functionsℱ
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Linear-UCB/GP-UCB: 
Algorithmic Principle: Optimism in the face of uncertainty
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f(x)

Pick input that maximizes upper confidence bound: It
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Regret of Lin-UCB/GP-UCB 
(generalization in action space)

 Theorem: [Dani, Hayes, & K. ’08], [Srinivas, Krause, K. & Seeger '10]  
Assuming  is an RKHS (with bounded norm), if we choose βt “correctly”, ℱ

 where  γT := max
x0…xT−1∈&

log det (I +
T−1

∑
t=0

ϕ(xt)ϕ(xt)⊤) f area i
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Regret of Lin-UCB/GP-UCB 
(generalization in action space)

 Theorem: [Dani, Hayes, & K. ’08], [Srinivas, Krause, K. & Seeger '10]  
Assuming  is an RKHS (with bounded norm), if we choose βt “correctly”, ℱ

 where  γT := max
x0…xT−1∈&

log det (I +
T−1

∑
t=0

ϕ(xt)ϕ(xt)⊤)
• Key complexity concept: “maximum information gain”   determines the regretγT

•   for  in -dimensionsγT ≈ d log T ϕ d
• Think of  as the “effective dimension"γT

• Easy to incorporate context
• Also: [Auer+ ’02; Abbasi-Yadkori+ ‘11]

are
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(LinUCB analysis)



Part-2: RL 
What are necessary conditions? 

Let’s look at the most natural assumptions.
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Approx. Dynamic Programming  
with Linear Function Approximation

Basic idea: approximate the  values with linear basis functions 
.  (where )

Q(s, a)
ϕ1(s, a), …ϕd(s, a) d ≪ #states, #actions
• C. Shannon. Programming a digital computer for playing chess. 

Philosophical Magazine, ’50.
• R.E. Bellman and S.E. Dreyfus. Functional approximations and dynamic 

programming. ’59.
• Lots of work on this approach, e.g.  

[Tesauro, ’95], [de Farias & Van Roy ’03], [Wen & Van Roy ’13] 

What conditions must our basis functions (our representations) satisfy 
in order for his approach to work?
• Let’s look at the most basic question with “linearly realizable Q*”
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(Does there exist a sample efficient algo?)

• Suppose we have a feature map: .⃗ϕ (s, a) ∈ Rd

• (A1: Linearly Realizable Q*): Assume for all , , there exists 
 s.t.  

	 	 	  
 

s, a h ∈ [H]
w⋆

1 , …w⋆
H ∈ Rd

Q⋆
h (s, a) = w⋆

h ⋅ ϕ(s, a)
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RL with Linearly Realizable Q*-Function Approximation

(Does there exist a sample efficient algo?)

• Suppose we have a feature map: .⃗ϕ (s, a) ∈ Rd

• (A1: Linearly Realizable Q*): Assume for all , , there exists 
 s.t.  

	 	 	  
 

s, a h ∈ [H]
w⋆

1 , …w⋆
H ∈ Rd

Q⋆
h (s, a) = w⋆

h ⋅ ϕ(s, a)

• Aside: the linear programing viewpoint.
• We have an underlying LP with  variables and  constraints.d O(SA)
• The LP is not general because it encodes the Bellman optimality 

constraints. 
• We have sampling access (in the episodic setting).
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Linearly Realizability is Not Sufficient for RL

Theorem:
• [Weisz, Amortila, Szepesvári ‘21]:  

There exists an MDP and a  satisfying A1 s.t any online RL algorithm (with 
knowledge of ) requires  samples to output the value  
up to constant additive error (with prob. ).

ϕ
ϕ Ω(min(2d,2H)) V⋆(s0)

≥ 0.9
• [Wang, Wang, K. ‘21]:  

Let’s make the problem even easier, where we also assume: 
A2 (Large Suboptimality Gap): for all , . 
The lower bound holds even with both A1 and A2. 

a ≠ π⋆(s) V⋆
h (s) − Q⋆

h (s, a) ≥ 1/16

Comments: An exponential separation between online RL vs simulation access. 
[Du, K., Wang, Yang ’20]: A1+A2+simulator access (input: any ; output:  )

 there is sample efficient approach to find an -opt policy.
s, a s′ ∼ P( ⋅ |s, a), r(s, a)

⟹ ϵ
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Construction Sketch: a Hard MDP Family  
(A ``leaking complete graph’')

•  is an integer (we will set )m m ≈ 2d

• the state space: {1̄, ⋯, m̄, f}
• call the special state  a “terminal state”. f
• at state , the feasible actions set is  

at , the feasible action set is .  
i.e. there are  feasible actions at each state.

ī [m]∖{i}
f [m − 1]

m − 1
• each MDP in this family is specified by an index 

 and denoted by .  
i.e. there are  MDPs in this family.
a* ∈ [m] ℳa*

m

...

...

...

Lemma: For any , there exist  unit vectors  
in  s.t.  and , . 
We will set . 
(proof: Johnson-Lindenstrauss)

γ > 0 m = ⌊exp( 1
8 γ2d)⌋ {v1, ⋯, vm}

Rd ∀i, j ∈ [m] i ≠ j |⟨vi, vj⟩ | ≤ γ
γ = 1/4
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Pr[ f |a1, a*] = 1,
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Pr[ f | f, ⋅ ] = 1.
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• Transitions: . s0 ∼ Uniform([m])

Pr[ f |a1, a*] = 1,

Pr[ ⋅ |a1, a2] =
a2 : ⟨v(a1), v(a2)⟩ + 2γ

f : 1 − ⟨v(a1), v(a2)⟩ − 2γ
, (a2 ≠ a*, a2 ≠ a1)

Pr[ f | f, ⋅ ] = 1.
• After taking action , the next state is either  or .  

This MDP looks like a ``leaking complete graph'' 
a2 a2 f

• It is possible to visit any other state (except for ); 
however, there is at least  probability of 
going to the terminal state . 
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The construction, continued
• Transitions: . s0 ∼ Uniform([m])

Pr[ f |a1, a*] = 1,

Pr[ ⋅ |a1, a2] =
a2 : ⟨v(a1), v(a2)⟩ + 2γ

f : 1 − ⟨v(a1), v(a2)⟩ − 2γ
, (a2 ≠ a*, a2 ≠ a1)

Pr[ f | f, ⋅ ] = 1.
• After taking action , the next state is either  or .  

This MDP looks like a ``leaking complete graph'' 
a2 a2 f

• It is possible to visit any other state (except for ); 
however, there is at least  probability of 
going to the terminal state . 

a*
1 − 3γ = 1/4

f
• The transition probabilities are indeed valid, because  

0 < γ ≤ ⟨v(a1), v(a2)⟩ + 2γ ≤ 3γ < 1.

...

...

...
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note: the feature map does not depend of .

d
ϕ(a1, a2):= (⟨v(a1), v(a2)⟩ + 2γ) ⋅ v(a2), ∀a1 ≠ a2

ϕ( f, ⋅ ):= 0
a*
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The construction, continued
• Features: of dimension  defined as: 

 

note: the feature map does not depend of .

d
ϕ(a1, a2):= (⟨v(a1), v(a2)⟩ + 2γ) ⋅ v(a2), ∀a1 ≠ a2

ϕ( f, ⋅ ):= 0
a*

• Rewards:  
for , 

    

for , 
 

1 ≤ h < H
Rh(a1, a*):= ⟨v(a1), v(a*)⟩ + 2γ,

Rh(a1, a2):= − 2γ [⟨v(a1), v(a2)⟩ + 2γ], a2 ≠ a*, a2 ≠ a1

Rh( f, ⋅ ):= 0.
h = H

rH(s, a) := ⟨ϕ(s, a), v(a*)⟩

...

...

...
8 E 32 34

tia
depends

E 282k I
ma



Verifying the Assumptions: Realizability and the Large Gap



Verifying the Assumptions: Realizability and the Large Gap
Lemma: For all , we have  and the “gap” is .(s, a) Q*h (s, a) = ⟨ϕ(s, a), v(a*)⟩ ≥ γ/4



Verifying the Assumptions: Realizability and the Large Gap
Lemma: For all , we have  and the “gap” is .(s, a) Q*h (s, a) = ⟨ϕ(s, a), v(a*)⟩ ≥ γ/4
Proof: throughout a2 ≠ a*



Verifying the Assumptions: Realizability and the Large Gap
Lemma: For all , we have  and the “gap” is .(s, a) Q*h (s, a) = ⟨ϕ(s, a), v(a*)⟩ ≥ γ/4
Proof: throughout a2 ≠ a*
• First, let’s verify  is the value of the policy .  

By induction, we can show: 

 

Qπ(s, a) = ⟨ϕ(s, a), v(a*)⟩ π(a) = a⋆

Qπ
h (a1, a2) = (⟨v(a1), v(a2)⟩ + 2γ) ⋅ ⟨v(a2), v(a*)⟩,

Qπ
h (a1, a*) = ⟨v(a1), v(a*)⟩ + 2γ
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fcvcai.ua yoT



Verifying the Assumptions: Realizability and the Large Gap
Lemma: For all , we have  and the “gap” is .(s, a) Q*h (s, a) = ⟨ϕ(s, a), v(a*)⟩ ≥ γ/4
Proof: throughout a2 ≠ a*
• First, let’s verify  is the value of the policy .  

By induction, we can show: 

 

Qπ(s, a) = ⟨ϕ(s, a), v(a*)⟩ π(a) = a⋆

Qπ
h (a1, a2) = (⟨v(a1), v(a2)⟩ + 2γ) ⋅ ⟨v(a2), v(a*)⟩,

Qπ
h (a1, a*) = ⟨v(a1), v(a*)⟩ + 2γ

• Proving optimality: for  
 

   is optimal

a2 ≠ a*, a1
Qπ

h (a1, a2) ≤ 3γ2, Qπ
h (a1, a*) = ⟨v(a1), v(a*)⟩ + 2γ ≥ γ > 3γ2

⟹ π



Verifying the Assumptions: Realizability and the Large Gap
Lemma: For all , we have  and the “gap” is .(s, a) Q*h (s, a) = ⟨ϕ(s, a), v(a*)⟩ ≥ γ/4
Proof: throughout a2 ≠ a*
• First, let’s verify  is the value of the policy .  

By induction, we can show: 

 

Qπ(s, a) = ⟨ϕ(s, a), v(a*)⟩ π(a) = a⋆

Qπ
h (a1, a2) = (⟨v(a1), v(a2)⟩ + 2γ) ⋅ ⟨v(a2), v(a*)⟩,

Qπ
h (a1, a*) = ⟨v(a1), v(a*)⟩ + 2γ

• Proving optimality: for  
 

   is optimal

a2 ≠ a*, a1
Qπ

h (a1, a2) ≤ 3γ2, Qπ
h (a1, a*) = ⟨v(a1), v(a*)⟩ + 2γ ≥ γ > 3γ2

⟹ π
• Proving the large gap: for  a2 ≠ a*

V*h (a1) − Q*h (a1, a2) = Qπ
h (a1, a*) − Qπ

h (a1, a2) > γ − 3γ2 ≥ 1
4 γ .
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The information theoretic proof:
Proof: When is info revealed about , indexed by  ?ℳa* a*
• Features: The construction of  does not depend on .ϕ a⋆

• Transitions: if we take , only then does the dynamics 
leak info about  (but there  actions)

a*
a* O(2d)

• Rewards: two cases which leak info about  
(1) if we take  at any , then reward leaks info about   
(but there  actions) 
(2) also, if we terminate at  , then the reward  
leaks info about on 

• But there is always at least  chance of moving to 

• So need at least  trajectories to hit 

a⋆

a* h a*
O(2d)

sH ≠ f rH
a*

1/4 f
O(2H) sH ≠ f

...

...
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• Rewards: two cases which leak info about  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The information theoretic proof:
Proof: When is info revealed about , indexed by  ?ℳa* a*
• Features: The construction of  does not depend on .ϕ a⋆

• Transitions: if we take , only then does the dynamics 
leak info about  (but there  actions)

a*
a* O(2d)

• Rewards: two cases which leak info about  
(1) if we take  at any , then reward leaks info about   
(but there  actions) 
(2) also, if we terminate at  , then the reward  
leaks info about on 

• But there is always at least  chance of moving to 

• So need at least  trajectories to hit 

a⋆

a* h a*
O(2d)

sH ≠ f rH
a*

1/4 f
O(2H) sH ≠ f

 need  samples to discover .⟹ Ω(min(2d,2H)) ℳa*
Caveats: Haven’t handled the state  cafefully.a*

...

...

...

Open Problem: Can we prove a lower bound with  actions?A = 2
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These Representational Issues are Relevant for Practice! 
(related concepts: distribution shift, “the deadly triad”, offline RL)

Theorem [Wang, Foster, K., ’20]:  
Analogue for “offline” RL: linearly realizability is also not sufficient.
Practice: [Wang, Wu, Salakhutdinov, K., 2021]: 
Does it matter in practice?  Say given good ““deep-pre-trained- features”? YES!

Offline dataset is a mix of two sources: 
running          &           random

Use SL to evaluate  
the running policy with 
“deep-pre-trained- features”

Massive error amplification 
even with 50/50% mixed offline data 



Part-3:  
What are sufficient conditions? 
Is there a common theme to positive results?
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Provable Generalization in RL

Can we find an -opt policy with no  dependence and 

 samples?
ϵ S, A

poly(H,1/ϵ, "complexity measure")
Agnostically/best-in-class? NO.
With linearly realizable ? Also NO.Q*

• With various stronger assumptions, YES! Many special cases:
• Linear Bellman Completion: [Munos, ’05, Zanette+ ‘19]
• Linear MDPs: [Wang & Yang’18]; [Jin+ ’19]  (the transition matrix  is low rank)
• Linear Quadratic Regulators (LQR): standard control theory model

• FLAMBE / Feature Selection: [Agarwal, K., Krishnamurthy, Sun ’20]
• Linear Mixture MDPs: [Modi+’20, Ayoub+ ’20]
• Block MDPs [Du+ ’19]
• Factored MDPs [Sun+ ’19]
• Kernelized Nonlinear Regulator [K.+ ’20]
• And more…..

• Are there structural commonalities between these underlying assumptions/models?
• almost: Bellman rank [Jiang+ ‘17]; Witness rank [Wen+ ’19]
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Intuition: properties of linear bandits  
(back to  RL problem)H = 1

• Linear (contextual) bandits:  
context:   action:   
observed reward:  

s a
r = w⋆ ⋅ ϕ(s, a) + ϵ

• Hypothesis class:  
Let  be the greedy policy for  

{f(s, a) = w( f ) ⋅ ϕ(s, a), w ∈ :}
πf f

An important structural property:
• Data reuse: difference between  and  is estimable when playing  

	
f r πg

Ea∼πg
[ f(s, a) − r] = ⟨w( f ) − w⋆, Eπg

[ϕ(s, a)]⟩
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Special case: linear Bellman complete classes 
(stronger conditions over linear realizability)

• Linear hypothesis class:  
with associated (greedy) value  and (greedy) policy: 

ℱ = {Qf : Qf(s, a) = w( f ) ⋅ ϕ(s, a)}
Vf(s) πf

• Completeness: suppose ;(Qf) ∈ ℱ
• Completes is very strong condition!  

Adding a feature to  can break the completeness property. ϕ

Analogous structural property holds for :ℱ
• Data reuse: Bellman error of any   is estimable when playing : 

 
(where expectation is with respect to trajectories under ) 

f πg
Eπg[Qf(sh, ah) − r(sh, ah) − Vf(sh+1)] ≤ ⟨wh( f ) − ;(wh( f )), Eπg[ϕ(sh, ah)]⟩

πg

• (recall) Bellman optimality: suppose Q⋆ − ;(Q⋆) = 0
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BiLinear Regret Classes: structural properties to 
enable generalization in RL

• Hypothesis class: ,   
with associated state-action value, (greedy) value and policy: 

• can be model based or model-free class. 

{f ∈ ℱ}
Qf(s, a), Vf(s), πf

Def: A  forms an (implicit) Bilinear class class if:(ℱ, ℓ)
• Bilinear regret: on-policy difference between claimed reward and true reward 

	 Eπf[Qf(sh, ah) − r(sh, ah) − Vf(sh+1)] ≤ ⟨wh( f ) − w⋆
h , Φh( f )⟩

• Data reuse: there is function  s.t. 
	

ℓf(s, a, s′ , g)
Eπf[ℓf(sh, ah, sh+1, g)] = ⟨wh(g) − w⋆

h , Φh( f )⟩
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two exceptions: deterministic linear ; -state aggregationQ⋆ Q⋆

• Bilinear classes generalize the: Bellman rank [Jiang+ ‘17]; Witness rank [Wen+ ’19]
• The framework easily leads to new models (see paper).
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• return: the best policy   foundπf
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• The proof is “elementary” using the elliptical potential function.  
[Dani, Hayes, K. ’08]



Thanks!

• A generalization theory in RL is possible and different from SL!

• necessary: linear realizability insufficient. need much stronger assumptions.

• sufficient: lin. bandit theory  RL theory (bilinear classes) is rich.

• covers known cases and new cases 

• FLAMBE: [Agarwal+ ’20] feature learning possible in this framework.


• practice: these issues are relevant (“deadly triad”/RL can be unstable)

→

See https://rltheorybook.github.io/ for forthcoming book!

https://rltheorybook.github.io/
https://rltheorybook.github.io/

