
Towards a Theory of Generalization 
 in Reinforcement Learning 

Sham M. Kakade 
University of Washington & Microsoft Research 

 

Hello Harvard
e MIT



[AlphaZero, Silver et.al, 17] [OpenAI Five, 18]

Progress of RL in Practice

2



Markov Decision Processes: 
a framework for RL



Markov Decision Processes: 
a framework for RL

• A policy:  
π : States → Actions



Markov Decision Processes: 
a framework for RL

• A policy:  
π : States → Actions

• Execute  to obtain a trajectory: π
s0, a0, r0, s1, a1, r1…sH−1, aH−1, rH−1



Markov Decision Processes: 
a framework for RL

• A policy:  
π : States → Actions

• Execute  to obtain a trajectory: π
s0, a0, r0, s1, a1, r1…sH−1, aH−1, rH−1

• Cumulative -step reward: 

	 ,    

H
Vπ

H(s) = #π [
H−1

∑
t=0

rt s0 = s] Qπ
H(s, a) = #π [

H−1

∑
t=0

rt s0 = s, a0 = a]
state action

valve



Markov Decision Processes: 
a framework for RL

• A policy:  
π : States → Actions

• Execute  to obtain a trajectory: π
s0, a0, r0, s1, a1, r1…sH−1, aH−1, rH−1

• Cumulative -step reward: 

	 ,    

H
Vπ

H(s) = #π [
H−1

∑
t=0

rt s0 = s] Qπ
H(s, a) = #π [

H−1

∑
t=0

rt s0 = s, a0 = a]
• Goal: Find a policy  that maximizes our value  from . 

Episodic setting: We start at ; act for  steps; repeat…
π Vπ(s0) s0

s0 H



4



Challenges in RL

4



Challenges in RL

1. Exploration 
(the environment may be 
unknown)

4



Challenges in RL

1. Exploration 
(the environment may be 
unknown)

2. Credit assignment problem 
(due to delayed rewards)

4



Challenges in RL

1. Exploration 
(the environment may be 
unknown)

2. Credit assignment problem 
(due to delayed rewards)

3. Large state/action spaces: 
hand state: joint angles/velocities 
cube state: configuration  
actions: forces applied to actuators

Dexterous Robotic Hand Manipulation 
OpenAI,  ‘19

4



Part-0:  
A Whirlwind Tour of Generalization  

from Supervised Learning to RL



Generalization is possible in the IID supervised learning setting!
 
To get -close to best in hypothesis class  , we need # of samples that is:ϵ ℱ

6

Provable Generalization in Supervised Learning (SL)



Generalization is possible in the IID supervised learning setting!
 
To get -close to best in hypothesis class  , we need # of samples that is:ϵ ℱ
• “Occam’s Razor” Bound (finite hypothesis class): need O(log |ℱ | /ϵ2)

6

Provable Generalization in Supervised Learning (SL)



Generalization is possible in the IID supervised learning setting!
 
To get -close to best in hypothesis class  , we need # of samples that is:ϵ ℱ
• “Occam’s Razor” Bound (finite hypothesis class): need O(log |ℱ | /ϵ2)
• Various Improvements:
• VC dim ; Classification (margin  bounds): ;  

Linear regression: 
O(VC(ℱ)/ϵ2) O(margin)/ϵ2)

O(dimension/ϵ2)
• Deep Learning:  the algorithm also determines the complexity control  

The key idea in SL: data reuse
With a training set, we can simultaneously evaluate the loss of all hypotheses in our 
class!

6

Provable Generalization in Supervised Learning (SL)



Sample Efficient RL in  
the Tabular Case 
(no generalization here)



Sample Efficient RL in  
the Tabular Case 
(no generalization here)
• S = #states, A = #actions, H = #horizon
• We have an (unknown) MDP.

small9

red



Sample Efficient RL in  
the Tabular Case 
(no generalization here)
• S = #states, A = #actions, H = #horizon
• We have an (unknown) MDP.
• Thm: [Kearns & Singh ‘98] In the episodic setting,  

  samples suffice to find  an -opt policy. 
Key idea: optimism + dynamic programming 
poly(S, A, H,1/ϵ) ϵ E3

w plan to
explore



Sample Efficient RL in  
the Tabular Case 
(no generalization here)
• S = #states, A = #actions, H = #horizon
• We have an (unknown) MDP.
• Thm: [Kearns & Singh ‘98] In the episodic setting,  

  samples suffice to find  an -opt policy. 
Key idea: optimism + dynamic programming 
poly(S, A, H,1/ϵ) ϵ

• Lots improvements on the rate:  
[Brafman& Tennenholtz ’02][K. '03][Auer+ ‘09] [Agrawal, Jia ’17]  
[Azar+ ‘13],[Dann & Brunskill ‘15]

• Provable Q-learning (+bonus):  
[Strehl+ (2006)], [Szita & Szepesvari ‘10],[Jin+ ‘18]

goals find 9 VIGO 2Vf o E

Y
model

Watkinsftao asym
based

Hinman optimal
Tamodelf ree



I: Provable Generalization in RL 
Q1: Can we find an -opt policy with no  dependence?ϵ S
• How can we reuse data to estimate the value of all policies in a policy class ? 

Idea: Trajectory tree algo  
dataset collection: uniformly at random choose actions for all  steps in an episode.  
estimation: uses importance sampling to evaluate every   

ℱ

H
f ∈ ℱ

8

Ohvalve
d



I: Provable Generalization in RL 
Q1: Can we find an -opt policy with no  dependence?ϵ S
• How can we reuse data to estimate the value of all policies in a policy class ? 

Idea: Trajectory tree algo  
dataset collection: uniformly at random choose actions for all  steps in an episode.  
estimation: uses importance sampling to evaluate every   

ℱ

H
f ∈ ℱ

• Thm:[Kearns, Mansour, & Ng ‘00] 
To find an -best in class policy, the trajectory tree algo uses  samplesϵ O(AH log( |ℱ | /ϵ2))

8

classic
gen

1 id Ymcas

NDP is
stock



I: Provable Generalization in RL 
Q1: Can we find an -opt policy with no  dependence?ϵ S
• How can we reuse data to estimate the value of all policies in a policy class ? 

Idea: Trajectory tree algo  
dataset collection: uniformly at random choose actions for all  steps in an episode.  
estimation: uses importance sampling to evaluate every   

ℱ

H
f ∈ ℱ

• Thm:[Kearns, Mansour, & Ng ‘00] 
To find an -best in class policy, the trajectory tree algo uses  samplesϵ O(AH log( |ℱ | /ϵ2))
• Only  dependence on hypothesis class size.log( |ℱ | )
• There are VC analogues as well. 

• Can we avoid the  dependence to find an an -best-in-class policy?  
Agnostically, NO! 
Proof: Consider a binary tree with -policies and a sparse reward at a leaf node.

2H ϵ

2H
8

agnostic withsonffEonson

I 1 MDP
AH Ae 2

a



II: Provable Generalization in RL




II: Provable Generalization in RL


• Q2: Can we find an -opt policy with no  dependence and 
 samples?

ϵ S, A
poly(H,1/ϵ, "complexity measure")



II: Provable Generalization in RL


• Q2: Can we find an -opt policy with no  dependence and 
 samples?

ϵ S, A
poly(H,1/ϵ, "complexity measure")
•Agnostically/best-in-class? NO.



II: Provable Generalization in RL


• Q2: Can we find an -opt policy with no  dependence and 
 samples?

ϵ S, A
poly(H,1/ϵ, "complexity measure")
•Agnostically/best-in-class? NO.
•With various stronger assumptions, of course. 
 



II: Provable Generalization in RL


• Q2: Can we find an -opt policy with no  dependence and 
 samples?

ϵ S, A
poly(H,1/ϵ, "complexity measure")
•Agnostically/best-in-class? NO.
•With various stronger assumptions, of course. 
 

What is the nature of the assumptions under which 
generalization in RL is possible? 

(what is necessary? what is sufficient?)

mile



Today’s Lecture
What are necessary representational and distributional conditions that permit  
provably sample-efficient offline reinforcement learning?  



Today’s Lecture
What are necessary representational and distributional conditions that permit  
provably sample-efficient offline reinforcement learning?  

• Part I: bandits & linear bandits 
(let’s start with horizon  case) H = 1



Today’s Lecture
What are necessary representational and distributional conditions that permit  
provably sample-efficient offline reinforcement learning?  

• Part I: bandits & linear bandits 
(let’s start with horizon  case) H = 1

• Part II: Lower bounds: 
Linear realizability: natural conditions to impose 
Is RL possible? 



Today’s Lecture
What are necessary representational and distributional conditions that permit  
provably sample-efficient offline reinforcement learning?  

• Part I: bandits & linear bandits 
(let’s start with horizon  case) H = 1

• Part II: Lower bounds: 
Linear realizability: natural conditions to impose 
Is RL possible? 

• Part III: Upper bounds: 
Are there unifying conditions that are sufficient?



Part-I:  
Bandits (the  case) 

(Let’s set the stage for RL!)
H = 1



12

Multi-armed bandits
How should we allocate  

T tokens to  “arms”  
to maximize our return? 

[Robins ’52, Gittins’79, Lai & Robbins ‘85 …]

A



12

Multi-armed bandits

•Very successful algo when  is small.A
•What can we do when the number or arms  is large?A

How should we allocate  
T tokens to  “arms”  

to maximize our return? 
[Robins ’52, Gittins’79, Lai & Robbins ‘85 …]

A

f



    Bandits 

 
 

•decision: pull an arm

13

    Linear (RKHS) Bandits 
 
 
 

•decision: choose some  
•e.g. 

x ∈ &
x ∈ R

Dealing with the large action case



    Bandits 

 
 

•decision: pull an arm

13

    Linear (RKHS) Bandits 
 
 
 

•decision: choose some  
•e.g. 

x ∈ &
x ∈ R

Dealing with the large action case

• widely used generalization: The “linear bandit” model [Abe & Long+  ’99] 
successful in many applications: scheduling, ads…



    Bandits 

 
 

•decision: pull an arm

13

    Linear (RKHS) Bandits 
 
 
 

•decision: choose some  
•e.g. 

x ∈ &
x ∈ R

Dealing with the large action case

• widely used generalization: The “linear bandit” model [Abe & Long+  ’99] 
successful in many applications: scheduling, ads…

• decision: , reward: , reward model: 
	 	

xt rt
rt = f(xt) + noise, f(x) = w⋆ ⋅ ϕ(x)



    Bandits 

 
 

•decision: pull an arm

13

    Linear (RKHS) Bandits 
 
 
 

•decision: choose some  
•e.g. 

x ∈ &
x ∈ R

Dealing with the large action case

• widely used generalization: The “linear bandit” model [Abe & Long+  ’99] 
successful in many applications: scheduling, ads…

• decision: , reward: , reward model: 
	 	

xt rt
rt = f(xt) + noise, f(x) = w⋆ ⋅ ϕ(x)

• Hypothesis class  is set of linear/RKHS functionsℱ



14

Linear-UCB/GP-UCB: 
Algorithmic Principle: Optimism in the face of uncertainty

x

f(x)

Pick input that maximizes upper confidence bound: It
the
fancy

Ou
mean

estimate of
f



14

Linear-UCB/GP-UCB: 
Algorithmic Principle: Optimism in the face of uncertainty

Naturally trades off exploration and exploitation

x

f(x)

Pick input that maximizes upper confidence bound:



14

Linear-UCB/GP-UCB: 
Algorithmic Principle: Optimism in the face of uncertainty

Naturally trades off exploration and exploitation
Only picks plausible maximizers

x

f(x)

Pick input that maximizes upper confidence bound:



14

Linear-UCB/GP-UCB: 
Algorithmic Principle: Optimism in the face of uncertainty

Naturally trades off exploration and exploitation
Only picks plausible maximizers

x

f(x)

Pick input that maximizes upper confidence bound:

How should 
we choose βt?



14

Linear-UCB/GP-UCB: 
Algorithmic Principle: Optimism in the face of uncertainty

Naturally trades off exploration and exploitation
Only picks plausible maximizers

x

f(x)

Pick input that maximizes upper confidence bound:

How should 
we choose βt?



15

Regret of Lin-UCB/GP-UCB 
(generalization in action space)

 Theorem: [Dani, Hayes, & K. ’08], [Srinivas, Krause, K. & Seeger '10]  
Assuming  is an RKHS (with bounded norm), if we choose βt “correctly”, ℱ

 where  γT := max
x0…xT−1∈&

log det (I +
T−1

∑
t=0

ϕ(xt)ϕ(xt)⊤) f area i
y



15

Regret of Lin-UCB/GP-UCB 
(generalization in action space)

 Theorem: [Dani, Hayes, & K. ’08], [Srinivas, Krause, K. & Seeger '10]  
Assuming  is an RKHS (with bounded norm), if we choose βt “correctly”, ℱ

 where  γT := max
x0…xT−1∈&

log det (I +
T−1

∑
t=0

ϕ(xt)ϕ(xt)⊤)
• Key complexity concept: “maximum information gain”   determines the regretγT

•   for  in -dimensionsγT ≈ d log T ϕ d
• Think of  as the “effective dimension"γT

• Easy to incorporate context
• Also: [Auer+ ’02; Abbasi-Yadkori+ ‘11]

are



Switch 
(LinUCB analysis)



Part-2: RL 
What are necessary conditions? 

Let’s look at the most natural assumptions.



Approx. Dynamic Programming  
with Linear Function Approximation



Approx. Dynamic Programming  
with Linear Function Approximation

Basic idea: approximate the  values with linear basis functions 
.  (where )

Q(s, a)
ϕ1(s, a), …ϕd(s, a) d ≪ #states, #actions

cRd



Approx. Dynamic Programming  
with Linear Function Approximation

Basic idea: approximate the  values with linear basis functions 
.  (where )

Q(s, a)
ϕ1(s, a), …ϕd(s, a) d ≪ #states, #actions
• C. Shannon. Programming a digital computer for playing chess. 

Philosophical Magazine, ’50.
• R.E. Bellman and S.E. Dreyfus. Functional approximations and dynamic 

programming. ’59.
• Lots of work on this approach, e.g.  

[Tesauro, ’95], [de Farias & Van Roy ’03], [Wen & Van Roy ’13] 



Approx. Dynamic Programming  
with Linear Function Approximation

Basic idea: approximate the  values with linear basis functions 
.  (where )

Q(s, a)
ϕ1(s, a), …ϕd(s, a) d ≪ #states, #actions
• C. Shannon. Programming a digital computer for playing chess. 

Philosophical Magazine, ’50.
• R.E. Bellman and S.E. Dreyfus. Functional approximations and dynamic 

programming. ’59.
• Lots of work on this approach, e.g.  

[Tesauro, ’95], [de Farias & Van Roy ’03], [Wen & Van Roy ’13] 

What conditions must our basis functions (our representations) satisfy 
in order for his approach to work?

F Hae w ofCat



Approx. Dynamic Programming  
with Linear Function Approximation

Basic idea: approximate the  values with linear basis functions 
.  (where )

Q(s, a)
ϕ1(s, a), …ϕd(s, a) d ≪ #states, #actions
• C. Shannon. Programming a digital computer for playing chess. 

Philosophical Magazine, ’50.
• R.E. Bellman and S.E. Dreyfus. Functional approximations and dynamic 

programming. ’59.
• Lots of work on this approach, e.g.  

[Tesauro, ’95], [de Farias & Van Roy ’03], [Wen & Van Roy ’13] 

What conditions must our basis functions (our representations) satisfy 
in order for his approach to work?
• Let’s look at the most basic question with “linearly realizable Q*”



RL with Linearly Realizable Q*-Function Approximation

(Does there exist a sample efficient algo?)



RL with Linearly Realizable Q*-Function Approximation

(Does there exist a sample efficient algo?)

• Suppose we have a feature map: .⃗ϕ (s, a) ∈ Rd



RL with Linearly Realizable Q*-Function Approximation

(Does there exist a sample efficient algo?)

• Suppose we have a feature map: .⃗ϕ (s, a) ∈ Rd

• (A1: Linearly Realizable Q*): Assume for all , , there exists 
 s.t.  

	 	 	  
 

s, a h ∈ [H]
w⋆

1 , …w⋆
H ∈ Rd

Q⋆
h (s, a) = w⋆

h ⋅ ϕ(s, a)

Eight aEss arqmaxoincs.atH h



RL with Linearly Realizable Q*-Function Approximation

(Does there exist a sample efficient algo?)

• Suppose we have a feature map: .⃗ϕ (s, a) ∈ Rd

• (A1: Linearly Realizable Q*): Assume for all , , there exists 
 s.t.  

	 	 	  
 

s, a h ∈ [H]
w⋆

1 , …w⋆
H ∈ Rd

Q⋆
h (s, a) = w⋆

h ⋅ ϕ(s, a)

• Aside: the linear programing viewpoint.



RL with Linearly Realizable Q*-Function Approximation

(Does there exist a sample efficient algo?)

• Suppose we have a feature map: .⃗ϕ (s, a) ∈ Rd

• (A1: Linearly Realizable Q*): Assume for all , , there exists 
 s.t.  

	 	 	  
 

s, a h ∈ [H]
w⋆

1 , …w⋆
H ∈ Rd

Q⋆
h (s, a) = w⋆

h ⋅ ϕ(s, a)

• Aside: the linear programing viewpoint.
• We have an underlying LP with  variables and  constraints.d O(SA)



RL with Linearly Realizable Q*-Function Approximation

(Does there exist a sample efficient algo?)

• Suppose we have a feature map: .⃗ϕ (s, a) ∈ Rd

• (A1: Linearly Realizable Q*): Assume for all , , there exists 
 s.t.  

	 	 	  
 

s, a h ∈ [H]
w⋆

1 , …w⋆
H ∈ Rd

Q⋆
h (s, a) = w⋆

h ⋅ ϕ(s, a)

• Aside: the linear programing viewpoint.
• We have an underlying LP with  variables and  constraints.d O(SA)
• The LP is not general because it encodes the Bellman optimality 

constraints. 



RL with Linearly Realizable Q*-Function Approximation

(Does there exist a sample efficient algo?)

• Suppose we have a feature map: .⃗ϕ (s, a) ∈ Rd

• (A1: Linearly Realizable Q*): Assume for all , , there exists 
 s.t.  

	 	 	  
 

s, a h ∈ [H]
w⋆

1 , …w⋆
H ∈ Rd

Q⋆
h (s, a) = w⋆

h ⋅ ϕ(s, a)

• Aside: the linear programing viewpoint.
• We have an underlying LP with  variables and  constraints.d O(SA)
• The LP is not general because it encodes the Bellman optimality 

constraints. 
• We have sampling access (in the episodic setting).



Linearly Realizability is Not Sufficient for RL



Linearly Realizability is Not Sufficient for RL

Theorem:



Linearly Realizability is Not Sufficient for RL

Theorem:
• [Weisz, Amortila, Szepesvári ‘21]:  

There exists an MDP and a  satisfying A1 s.t any online RL algorithm (with 
knowledge of ) requires  samples to output the value  
up to constant additive error (with prob. ).

ϕ
ϕ Ω(min(2d,2H)) V⋆(s0)

≥ 0.9
0 I close



Linearly Realizability is Not Sufficient for RL

Theorem:
• [Weisz, Amortila, Szepesvári ‘21]:  

There exists an MDP and a  satisfying A1 s.t any online RL algorithm (with 
knowledge of ) requires  samples to output the value  
up to constant additive error (with prob. ).

ϕ
ϕ Ω(min(2d,2H)) V⋆(s0)

≥ 0.9
• [Wang, Wang, K. ‘21]:  

Let’s make the problem even easier, where we also assume: 
A2 (Large Suboptimality Gap): for all , . 
The lower bound holds even with both A1 and A2. 

a ≠ π⋆(s) V⋆
h (s) − Q⋆

h (s, a) ≥ 1/16



Linearly Realizability is Not Sufficient for RL

Theorem:
• [Weisz, Amortila, Szepesvári ‘21]:  

There exists an MDP and a  satisfying A1 s.t any online RL algorithm (with 
knowledge of ) requires  samples to output the value  
up to constant additive error (with prob. ).

ϕ
ϕ Ω(min(2d,2H)) V⋆(s0)

≥ 0.9
• [Wang, Wang, K. ‘21]:  

Let’s make the problem even easier, where we also assume: 
A2 (Large Suboptimality Gap): for all , . 
The lower bound holds even with both A1 and A2. 

a ≠ π⋆(s) V⋆
h (s) − Q⋆

h (s, a) ≥ 1/16

Comments: An exponential separation between online RL vs simulation access. 
[Du, K., Wang, Yang ’20]: A1+A2+simulator access (input: any ; output:  )

 there is sample efficient approach to find an -opt policy.
s, a s′ ∼ P( ⋅ |s, a), r(s, a)

⟹ ϵ

conj
nine 2524243 x Nyotwifh s

access

I possible
with sin

access



Construction Sketch: a Hard MDP Family  
(A ``leaking complete graph’')

...

...

...



Construction Sketch: a Hard MDP Family  
(A ``leaking complete graph’')

•  is an integer (we will set )m m ≈ 2d
...

...

...



Construction Sketch: a Hard MDP Family  
(A ``leaking complete graph’')

•  is an integer (we will set )m m ≈ 2d

• the state space: {1̄, ⋯, m̄, f}
...

...

...



Construction Sketch: a Hard MDP Family  
(A ``leaking complete graph’')

•  is an integer (we will set )m m ≈ 2d

• the state space: {1̄, ⋯, m̄, f}
• call the special state  a “terminal state”. f

...

...

...



Construction Sketch: a Hard MDP Family  
(A ``leaking complete graph’')

•  is an integer (we will set )m m ≈ 2d

• the state space: {1̄, ⋯, m̄, f}
• call the special state  a “terminal state”. f
• at state , the feasible actions set is  

at , the feasible action set is .  
i.e. there are  feasible actions at each state.

ī [m]∖{i}
f [m − 1]

m − 1

...

...

...



Construction Sketch: a Hard MDP Family  
(A ``leaking complete graph’')

•  is an integer (we will set )m m ≈ 2d

• the state space: {1̄, ⋯, m̄, f}
• call the special state  a “terminal state”. f
• at state , the feasible actions set is  

at , the feasible action set is .  
i.e. there are  feasible actions at each state.

ī [m]∖{i}
f [m − 1]

m − 1
• each MDP in this family is specified by an index 

 and denoted by .  
i.e. there are  MDPs in this family.
a* ∈ [m] ℳa*

m

...

...

...



Construction Sketch: a Hard MDP Family  
(A ``leaking complete graph’')

•  is an integer (we will set )m m ≈ 2d

• the state space: {1̄, ⋯, m̄, f}
• call the special state  a “terminal state”. f
• at state , the feasible actions set is  

at , the feasible action set is .  
i.e. there are  feasible actions at each state.

ī [m]∖{i}
f [m − 1]

m − 1
• each MDP in this family is specified by an index 

 and denoted by .  
i.e. there are  MDPs in this family.
a* ∈ [m] ℳa*

m

...

...

...

Lemma: For any , there exist  unit vectors  
in  s.t.  and , . 
We will set . 
(proof: Johnson-Lindenstrauss)

γ > 0 m = ⌊exp( 1
8 γ2d)⌋ {v1, ⋯, vm}

Rd ∀i, j ∈ [m] i ≠ j |⟨vi, vj⟩ | ≤ γ
γ = 1/4



The construction, continued
...

...

...



The construction, continued
• Transitions: . s0 ∼ Uniform([m])

Pr[ f |a1, a*] = 1,

Pr[ ⋅ |a1, a2] =
a2 : ⟨v(a1), v(a2)⟩ + 2γ

f : 1 − ⟨v(a1), v(a2)⟩ − 2γ
, (a2 ≠ a*, a2 ≠ a1)

Pr[ f | f, ⋅ ] = 1.

...

...

...

Pr nextstate1
corn state take



The construction, continued
• Transitions: . s0 ∼ Uniform([m])

Pr[ f |a1, a*] = 1,

Pr[ ⋅ |a1, a2] =
a2 : ⟨v(a1), v(a2)⟩ + 2γ

f : 1 − ⟨v(a1), v(a2)⟩ − 2γ
, (a2 ≠ a*, a2 ≠ a1)

Pr[ f | f, ⋅ ] = 1.
• After taking action , the next state is either  or .  

This MDP looks like a ``leaking complete graph'' 
a2 a2 f

...

...

...



The construction, continued
• Transitions: . s0 ∼ Uniform([m])

Pr[ f |a1, a*] = 1,

Pr[ ⋅ |a1, a2] =
a2 : ⟨v(a1), v(a2)⟩ + 2γ

f : 1 − ⟨v(a1), v(a2)⟩ − 2γ
, (a2 ≠ a*, a2 ≠ a1)

Pr[ f | f, ⋅ ] = 1.
• After taking action , the next state is either  or .  

This MDP looks like a ``leaking complete graph'' 
a2 a2 f

• It is possible to visit any other state (except for ); 
however, there is at least  probability of 
going to the terminal state . 

a*
1 − 3γ = 1/4

f

...

...

...



The construction, continued
• Transitions: . s0 ∼ Uniform([m])

Pr[ f |a1, a*] = 1,

Pr[ ⋅ |a1, a2] =
a2 : ⟨v(a1), v(a2)⟩ + 2γ

f : 1 − ⟨v(a1), v(a2)⟩ − 2γ
, (a2 ≠ a*, a2 ≠ a1)

Pr[ f | f, ⋅ ] = 1.
• After taking action , the next state is either  or .  

This MDP looks like a ``leaking complete graph'' 
a2 a2 f

• It is possible to visit any other state (except for ); 
however, there is at least  probability of 
going to the terminal state . 

a*
1 − 3γ = 1/4

f
• The transition probabilities are indeed valid, because  

0 < γ ≤ ⟨v(a1), v(a2)⟩ + 2γ ≤ 3γ < 1.

...

...

...

IE EE

r iti r

I E Lviv sty
4



The construction, continued
...

...

...



The construction, continued
• Features: of dimension  defined as: 

 

note: the feature map does not depend of .

d
ϕ(a1, a2):= (⟨v(a1), v(a2)⟩ + 2γ) ⋅ v(a2), ∀a1 ≠ a2

ϕ( f, ⋅ ):= 0
a*

...

...

...



The construction, continued
• Features: of dimension  defined as: 

 

note: the feature map does not depend of .

d
ϕ(a1, a2):= (⟨v(a1), v(a2)⟩ + 2γ) ⋅ v(a2), ∀a1 ≠ a2

ϕ( f, ⋅ ):= 0
a*

• Rewards:  
for , 

    

for , 
 

1 ≤ h < H
Rh(a1, a*):= ⟨v(a1), v(a*)⟩ + 2γ,

Rh(a1, a2):= − 2γ [⟨v(a1), v(a2)⟩ + 2γ], a2 ≠ a*, a2 ≠ a1

Rh( f, ⋅ ):= 0.
h = H

rH(s, a) := ⟨ϕ(s, a), v(a*)⟩

...

...

...
8 E 32 34

tia
depends

E 282k I
ma



Verifying the Assumptions: Realizability and the Large Gap



Verifying the Assumptions: Realizability and the Large Gap
Lemma: For all , we have  and the “gap” is .(s, a) Q*h (s, a) = ⟨ϕ(s, a), v(a*)⟩ ≥ γ/4



Verifying the Assumptions: Realizability and the Large Gap
Lemma: For all , we have  and the “gap” is .(s, a) Q*h (s, a) = ⟨ϕ(s, a), v(a*)⟩ ≥ γ/4
Proof: throughout a2 ≠ a*



Verifying the Assumptions: Realizability and the Large Gap
Lemma: For all , we have  and the “gap” is .(s, a) Q*h (s, a) = ⟨ϕ(s, a), v(a*)⟩ ≥ γ/4
Proof: throughout a2 ≠ a*
• First, let’s verify  is the value of the policy .  

By induction, we can show: 

 

Qπ(s, a) = ⟨ϕ(s, a), v(a*)⟩ π(a) = a⋆

Qπ
h (a1, a2) = (⟨v(a1), v(a2)⟩ + 2γ) ⋅ ⟨v(a2), v(a*)⟩,

Qπ
h (a1, a*) = ⟨v(a1), v(a*)⟩ + 2γ

0 woken flat air
fcvcai.ua yoT



Verifying the Assumptions: Realizability and the Large Gap
Lemma: For all , we have  and the “gap” is .(s, a) Q*h (s, a) = ⟨ϕ(s, a), v(a*)⟩ ≥ γ/4
Proof: throughout a2 ≠ a*
• First, let’s verify  is the value of the policy .  

By induction, we can show: 

 

Qπ(s, a) = ⟨ϕ(s, a), v(a*)⟩ π(a) = a⋆

Qπ
h (a1, a2) = (⟨v(a1), v(a2)⟩ + 2γ) ⋅ ⟨v(a2), v(a*)⟩,

Qπ
h (a1, a*) = ⟨v(a1), v(a*)⟩ + 2γ

• Proving optimality: for  
 

   is optimal

a2 ≠ a*, a1
Qπ

h (a1, a2) ≤ 3γ2, Qπ
h (a1, a*) = ⟨v(a1), v(a*)⟩ + 2γ ≥ γ > 3γ2

⟹ π



Verifying the Assumptions: Realizability and the Large Gap
Lemma: For all , we have  and the “gap” is .(s, a) Q*h (s, a) = ⟨ϕ(s, a), v(a*)⟩ ≥ γ/4
Proof: throughout a2 ≠ a*
• First, let’s verify  is the value of the policy .  

By induction, we can show: 

 

Qπ(s, a) = ⟨ϕ(s, a), v(a*)⟩ π(a) = a⋆

Qπ
h (a1, a2) = (⟨v(a1), v(a2)⟩ + 2γ) ⋅ ⟨v(a2), v(a*)⟩,

Qπ
h (a1, a*) = ⟨v(a1), v(a*)⟩ + 2γ

• Proving optimality: for  
 

   is optimal

a2 ≠ a*, a1
Qπ

h (a1, a2) ≤ 3γ2, Qπ
h (a1, a*) = ⟨v(a1), v(a*)⟩ + 2γ ≥ γ > 3γ2

⟹ π
• Proving the large gap: for  a2 ≠ a*

V*h (a1) − Q*h (a1, a2) = Qπ
h (a1, a*) − Qπ

h (a1, a2) > γ − 3γ2 ≥ 1
4 γ .



The information theoretic proof:
...

...

...



The information theoretic proof:
Proof: When is info revealed about , indexed by  ?ℳa* a*
...

...

...



The information theoretic proof:
Proof: When is info revealed about , indexed by  ?ℳa* a*
• Features: The construction of  does not depend on .ϕ a⋆
...

...

...



The information theoretic proof:
Proof: When is info revealed about , indexed by  ?ℳa* a*
• Features: The construction of  does not depend on .ϕ a⋆

• Transitions: if we take , only then does the dynamics 
leak info about  (but there  actions)

a*
a* O(2d)...

...

...



The information theoretic proof:
Proof: When is info revealed about , indexed by  ?ℳa* a*
• Features: The construction of  does not depend on .ϕ a⋆

• Transitions: if we take , only then does the dynamics 
leak info about  (but there  actions)

a*
a* O(2d)

• Rewards: two cases which leak info about  
(1) if we take  at any , then reward leaks info about   
(but there  actions) 
(2) also, if we terminate at  , then the reward  
leaks info about on 

• But there is always at least  chance of moving to 

• So need at least  trajectories to hit 

a⋆

a* h a*
O(2d)

sH ≠ f rH
a*

1/4 f
O(2H) sH ≠ f

...

...

...
K ft M

Eg



The information theoretic proof:
Proof: When is info revealed about , indexed by  ?ℳa* a*
• Features: The construction of  does not depend on .ϕ a⋆

• Transitions: if we take , only then does the dynamics 
leak info about  (but there  actions)

a*
a* O(2d)

• Rewards: two cases which leak info about  
(1) if we take  at any , then reward leaks info about   
(but there  actions) 
(2) also, if we terminate at  , then the reward  
leaks info about on 

• But there is always at least  chance of moving to 

• So need at least  trajectories to hit 

a⋆

a* h a*
O(2d)

sH ≠ f rH
a*

1/4 f
O(2H) sH ≠ f

 need  samples to discover .⟹ Ω(min(2d,2H)) ℳa*

...

...

...



The information theoretic proof:
Proof: When is info revealed about , indexed by  ?ℳa* a*
• Features: The construction of  does not depend on .ϕ a⋆

• Transitions: if we take , only then does the dynamics 
leak info about  (but there  actions)

a*
a* O(2d)

• Rewards: two cases which leak info about  
(1) if we take  at any , then reward leaks info about   
(but there  actions) 
(2) also, if we terminate at  , then the reward  
leaks info about on 

• But there is always at least  chance of moving to 

• So need at least  trajectories to hit 

a⋆

a* h a*
O(2d)

sH ≠ f rH
a*

1/4 f
O(2H) sH ≠ f

 need  samples to discover .⟹ Ω(min(2d,2H)) ℳa*
Caveats: Haven’t handled the state  cafefully.a*

...

...

...



The information theoretic proof:
Proof: When is info revealed about , indexed by  ?ℳa* a*
• Features: The construction of  does not depend on .ϕ a⋆

• Transitions: if we take , only then does the dynamics 
leak info about  (but there  actions)

a*
a* O(2d)

• Rewards: two cases which leak info about  
(1) if we take  at any , then reward leaks info about   
(but there  actions) 
(2) also, if we terminate at  , then the reward  
leaks info about on 

• But there is always at least  chance of moving to 

• So need at least  trajectories to hit 

a⋆

a* h a*
O(2d)

sH ≠ f rH
a*

1/4 f
O(2H) sH ≠ f

 need  samples to discover .⟹ Ω(min(2d,2H)) ℳa*
Caveats: Haven’t handled the state  cafefully.a*

...

...

...

Open Problem: Can we prove a lower bound with  actions?A = 2



Interlude: 
Are these issues relevant in practice?



These Representational Issues are Relevant for Practice! 
(related concepts: distribution shift, “the deadly triad”, offline RL)



These Representational Issues are Relevant for Practice! 
(related concepts: distribution shift, “the deadly triad”, offline RL)

Theorem [Wang, Foster, K., ’20]:  
Analogue for “offline” RL: linearly realizability is also not sufficient.



These Representational Issues are Relevant for Practice! 
(related concepts: distribution shift, “the deadly triad”, offline RL)

Theorem [Wang, Foster, K., ’20]:  
Analogue for “offline” RL: linearly realizability is also not sufficient.
Practice: [Wang, Wu, Salakhutdinov, K., 2021]: 
Does it matter in practice?  Say given good ““deep-pre-trained- features”? YES!

Offline dataset is a mix of two sources: 
running          &           random

Use SL to evaluate  
the running policy with 
“deep-pre-trained- features”

Massive error amplification 
even with 50/50% mixed offline data 



Part-3:  
What are sufficient conditions? 
Is there a common theme to positive results?



Provable Generalization in RL

Can we find an -opt policy with no  dependence and 

 samples?
ϵ S, A

poly(H,1/ϵ, "complexity measure")



Provable Generalization in RL

Can we find an -opt policy with no  dependence and 

 samples?
ϵ S, A

poly(H,1/ϵ, "complexity measure")
Agnostically/best-in-class? NO.



Provable Generalization in RL

Can we find an -opt policy with no  dependence and 

 samples?
ϵ S, A

poly(H,1/ϵ, "complexity measure")
Agnostically/best-in-class? NO.
With linearly realizable ? Also NO.Q*



Provable Generalization in RL

Can we find an -opt policy with no  dependence and 

 samples?
ϵ S, A

poly(H,1/ϵ, "complexity measure")
Agnostically/best-in-class? NO.
With linearly realizable ? Also NO.Q*

• With various stronger assumptions, YES! Many special cases:
• Linear Bellman Completion: [Munos, ’05, Zanette+ ‘19]
• Linear MDPs: [Wang & Yang’18]; [Jin+ ’19]  (the transition matrix  is low rank)
• Linear Quadratic Regulators (LQR): standard control theory model

• FLAMBE / Feature Selection: [Agarwal, K., Krishnamurthy, Sun ’20]
• Linear Mixture MDPs: [Modi+’20, Ayoub+ ’20]
• Block MDPs [Du+ ’19]
• Factored MDPs [Sun+ ’19]



Provable Generalization in RL

Can we find an -opt policy with no  dependence and 

 samples?
ϵ S, A

poly(H,1/ϵ, "complexity measure")
Agnostically/best-in-class? NO.
With linearly realizable ? Also NO.Q*

• With various stronger assumptions, YES! Many special cases:
• Linear Bellman Completion: [Munos, ’05, Zanette+ ‘19]
• Linear MDPs: [Wang & Yang’18]; [Jin+ ’19]  (the transition matrix  is low rank)
• Linear Quadratic Regulators (LQR): standard control theory model

• FLAMBE / Feature Selection: [Agarwal, K., Krishnamurthy, Sun ’20]
• Linear Mixture MDPs: [Modi+’20, Ayoub+ ’20]
• Block MDPs [Du+ ’19]
• Factored MDPs [Sun+ ’19]
• Kernelized Nonlinear Regulator [K.+ ’20]



Provable Generalization in RL

Can we find an -opt policy with no  dependence and 

 samples?
ϵ S, A

poly(H,1/ϵ, "complexity measure")
Agnostically/best-in-class? NO.
With linearly realizable ? Also NO.Q*

• With various stronger assumptions, YES! Many special cases:
• Linear Bellman Completion: [Munos, ’05, Zanette+ ‘19]
• Linear MDPs: [Wang & Yang’18]; [Jin+ ’19]  (the transition matrix  is low rank)
• Linear Quadratic Regulators (LQR): standard control theory model

• FLAMBE / Feature Selection: [Agarwal, K., Krishnamurthy, Sun ’20]
• Linear Mixture MDPs: [Modi+’20, Ayoub+ ’20]
• Block MDPs [Du+ ’19]
• Factored MDPs [Sun+ ’19]
• Kernelized Nonlinear Regulator [K.+ ’20]
• And more…..



Provable Generalization in RL

Can we find an -opt policy with no  dependence and 

 samples?
ϵ S, A

poly(H,1/ϵ, "complexity measure")
Agnostically/best-in-class? NO.
With linearly realizable ? Also NO.Q*

• With various stronger assumptions, YES! Many special cases:
• Linear Bellman Completion: [Munos, ’05, Zanette+ ‘19]
• Linear MDPs: [Wang & Yang’18]; [Jin+ ’19]  (the transition matrix  is low rank)
• Linear Quadratic Regulators (LQR): standard control theory model

• FLAMBE / Feature Selection: [Agarwal, K., Krishnamurthy, Sun ’20]
• Linear Mixture MDPs: [Modi+’20, Ayoub+ ’20]
• Block MDPs [Du+ ’19]
• Factored MDPs [Sun+ ’19]
• Kernelized Nonlinear Regulator [K.+ ’20]
• And more…..

• Are there structural commonalities between these underlying assumptions/models?



Provable Generalization in RL

Can we find an -opt policy with no  dependence and 

 samples?
ϵ S, A

poly(H,1/ϵ, "complexity measure")
Agnostically/best-in-class? NO.
With linearly realizable ? Also NO.Q*

• With various stronger assumptions, YES! Many special cases:
• Linear Bellman Completion: [Munos, ’05, Zanette+ ‘19]
• Linear MDPs: [Wang & Yang’18]; [Jin+ ’19]  (the transition matrix  is low rank)
• Linear Quadratic Regulators (LQR): standard control theory model

• FLAMBE / Feature Selection: [Agarwal, K., Krishnamurthy, Sun ’20]
• Linear Mixture MDPs: [Modi+’20, Ayoub+ ’20]
• Block MDPs [Du+ ’19]
• Factored MDPs [Sun+ ’19]
• Kernelized Nonlinear Regulator [K.+ ’20]
• And more…..

• Are there structural commonalities between these underlying assumptions/models?
• almost: Bellman rank [Jiang+ ‘17]; Witness rank [Wen+ ’19]



Intuition: properties of linear bandits  
(back to  RL problem)H = 1



Intuition: properties of linear bandits  
(back to  RL problem)H = 1

• Linear (contextual) bandits:  
context:   action:   
observed reward:  

s a
r = w⋆ ⋅ ϕ(s, a) + ϵ



Intuition: properties of linear bandits  
(back to  RL problem)H = 1

• Linear (contextual) bandits:  
context:   action:   
observed reward:  

s a
r = w⋆ ⋅ ϕ(s, a) + ϵ

• Hypothesis class:  
Let  be the greedy policy for  

{f(s, a) = w( f ) ⋅ ϕ(s, a), w ∈ :}
πf f



Intuition: properties of linear bandits  
(back to  RL problem)H = 1

• Linear (contextual) bandits:  
context:   action:   
observed reward:  

s a
r = w⋆ ⋅ ϕ(s, a) + ϵ

• Hypothesis class:  
Let  be the greedy policy for  

{f(s, a) = w( f ) ⋅ ϕ(s, a), w ∈ :}
πf f

An important structural property:



Intuition: properties of linear bandits  
(back to  RL problem)H = 1

• Linear (contextual) bandits:  
context:   action:   
observed reward:  

s a
r = w⋆ ⋅ ϕ(s, a) + ϵ

• Hypothesis class:  
Let  be the greedy policy for  

{f(s, a) = w( f ) ⋅ ϕ(s, a), w ∈ :}
πf f

An important structural property:
• Data reuse: difference between  and  is estimable when playing  

	
f r πg

Ea∼πg
[ f(s, a) − r] = ⟨w( f ) − w⋆, Eπg

[ϕ(s, a)]⟩



Special case: linear Bellman complete classes 
(stronger conditions over linear realizability)



Special case: linear Bellman complete classes 
(stronger conditions over linear realizability)

• Linear hypothesis class:  
with associated (greedy) value  and (greedy) policy: 

ℱ = {Qf : Qf(s, a) = w( f ) ⋅ ϕ(s, a)}
Vf(s) πf



Special case: linear Bellman complete classes 
(stronger conditions over linear realizability)

• Linear hypothesis class:  
with associated (greedy) value  and (greedy) policy: 

ℱ = {Qf : Qf(s, a) = w( f ) ⋅ ϕ(s, a)}
Vf(s) πf

• Completeness: suppose ;(Qf) ∈ ℱ
Z Q

Bedone

budcap
openfor

E Q maax
Nsa

a tEMayo
sip

s

k



Special case: linear Bellman complete classes 
(stronger conditions over linear realizability)

• Linear hypothesis class:  
with associated (greedy) value  and (greedy) policy: 

ℱ = {Qf : Qf(s, a) = w( f ) ⋅ ϕ(s, a)}
Vf(s) πf

• Completeness: suppose ;(Qf) ∈ ℱ
• Completes is very strong condition!  

Adding a feature to  can break the completeness property. ϕ

Analogous structural property holds for :ℱ



Special case: linear Bellman complete classes 
(stronger conditions over linear realizability)

• Linear hypothesis class:  
with associated (greedy) value  and (greedy) policy: 

ℱ = {Qf : Qf(s, a) = w( f ) ⋅ ϕ(s, a)}
Vf(s) πf

• Completeness: suppose ;(Qf) ∈ ℱ
• Completes is very strong condition!  

Adding a feature to  can break the completeness property. ϕ

Analogous structural property holds for :ℱ
• Data reuse: Bellman error of any   is estimable when playing : 

 
(where expectation is with respect to trajectories under ) 

f πg
Eπg[Qf(sh, ah) − r(sh, ah) − Vf(sh+1)] ≤ ⟨wh( f ) − ;(wh( f )), Eπg[ϕ(sh, ah)]⟩

πg



Special case: linear Bellman complete classes 
(stronger conditions over linear realizability)

• Linear hypothesis class:  
with associated (greedy) value  and (greedy) policy: 

ℱ = {Qf : Qf(s, a) = w( f ) ⋅ ϕ(s, a)}
Vf(s) πf

• Completeness: suppose ;(Qf) ∈ ℱ
• Completes is very strong condition!  

Adding a feature to  can break the completeness property. ϕ

Analogous structural property holds for :ℱ
• Data reuse: Bellman error of any   is estimable when playing : 

 
(where expectation is with respect to trajectories under ) 

f πg
Eπg[Qf(sh, ah) − r(sh, ah) − Vf(sh+1)] ≤ ⟨wh( f ) − ;(wh( f )), Eπg[ϕ(sh, ah)]⟩

πg

• (recall) Bellman optimality: suppose Q⋆ − ;(Q⋆) = 0



BiLinear Regret Classes: structural properties to 
enable generalization in RL



BiLinear Regret Classes: structural properties to 
enable generalization in RL

• Hypothesis class: ,   
with associated state-action value, (greedy) value and policy: 

• can be model based or model-free class. 

{f ∈ ℱ}
Qf(s, a), Vf(s), πf



BiLinear Regret Classes: structural properties to 
enable generalization in RL

• Hypothesis class: ,   
with associated state-action value, (greedy) value and policy: 

• can be model based or model-free class. 

{f ∈ ℱ}
Qf(s, a), Vf(s), πf

Def: A  forms an (implicit) Bilinear class class if:(ℱ, ℓ)



BiLinear Regret Classes: structural properties to 
enable generalization in RL

• Hypothesis class: ,   
with associated state-action value, (greedy) value and policy: 

• can be model based or model-free class. 

{f ∈ ℱ}
Qf(s, a), Vf(s), πf

Def: A  forms an (implicit) Bilinear class class if:(ℱ, ℓ)
• Bilinear regret: on-policy difference between claimed reward and true reward 

	 Eπf[Qf(sh, ah) − r(sh, ah) − Vf(sh+1)] ≤ ⟨wh( f ) − w⋆
h , Φh( f )⟩



BiLinear Regret Classes: structural properties to 
enable generalization in RL

• Hypothesis class: ,   
with associated state-action value, (greedy) value and policy: 

• can be model based or model-free class. 

{f ∈ ℱ}
Qf(s, a), Vf(s), πf

Def: A  forms an (implicit) Bilinear class class if:(ℱ, ℓ)
• Bilinear regret: on-policy difference between claimed reward and true reward 

	 Eπf[Qf(sh, ah) − r(sh, ah) − Vf(sh+1)] ≤ ⟨wh( f ) − w⋆
h , Φh( f )⟩

• Data reuse: there is function  s.t. 
	

ℓf(s, a, s′ , g)
Eπf[ℓf(sh, ah, sh+1, g)] = ⟨wh(g) − w⋆

h , Φh( f )⟩



Theorem: Structural Commonalities and Bilinear Classes



Theorem: Structural Commonalities and Bilinear Classes
• Theorem: [Du, K., Lee, Lovett, Mahajan, Sun, Wang ’19] 

The following models are bilinear classes for some discrepancy function ℓ( ⋅ )



Theorem: Structural Commonalities and Bilinear Classes
• Theorem: [Du, K., Lee, Lovett, Mahajan, Sun, Wang ’19] 

The following models are bilinear classes for some discrepancy function ℓ( ⋅ )
• Linear Bellman Completion: [Munos, ’05, Zanette+ ‘19]



Theorem: Structural Commonalities and Bilinear Classes
• Theorem: [Du, K., Lee, Lovett, Mahajan, Sun, Wang ’19] 

The following models are bilinear classes for some discrepancy function ℓ( ⋅ )
• Linear Bellman Completion: [Munos, ’05, Zanette+ ‘19]
• Linear MDPs: [Wang & Yang’18]; [Jin+ ’19]  (the transition matrix  is low rank)



Theorem: Structural Commonalities and Bilinear Classes
• Theorem: [Du, K., Lee, Lovett, Mahajan, Sun, Wang ’19] 

The following models are bilinear classes for some discrepancy function ℓ( ⋅ )
• Linear Bellman Completion: [Munos, ’05, Zanette+ ‘19]
• Linear MDPs: [Wang & Yang’18]; [Jin+ ’19]  (the transition matrix  is low rank)
• Linear Quadratic Regulators (LQR): standard control theory model



Theorem: Structural Commonalities and Bilinear Classes
• Theorem: [Du, K., Lee, Lovett, Mahajan, Sun, Wang ’19] 

The following models are bilinear classes for some discrepancy function ℓ( ⋅ )
• Linear Bellman Completion: [Munos, ’05, Zanette+ ‘19]
• Linear MDPs: [Wang & Yang’18]; [Jin+ ’19]  (the transition matrix  is low rank)
• Linear Quadratic Regulators (LQR): standard control theory model

• FLAMBE / Feature Selection: [Agarwal, K., Krishnamurthy, Sun ’20]



Theorem: Structural Commonalities and Bilinear Classes
• Theorem: [Du, K., Lee, Lovett, Mahajan, Sun, Wang ’19] 

The following models are bilinear classes for some discrepancy function ℓ( ⋅ )
• Linear Bellman Completion: [Munos, ’05, Zanette+ ‘19]
• Linear MDPs: [Wang & Yang’18]; [Jin+ ’19]  (the transition matrix  is low rank)
• Linear Quadratic Regulators (LQR): standard control theory model

• FLAMBE / Feature Selection: [Agarwal, K., Krishnamurthy, Sun ’20]
• Linear Mixture MDPs: [Modi+’20, Ayoub+ ’20]



Theorem: Structural Commonalities and Bilinear Classes
• Theorem: [Du, K., Lee, Lovett, Mahajan, Sun, Wang ’19] 

The following models are bilinear classes for some discrepancy function ℓ( ⋅ )
• Linear Bellman Completion: [Munos, ’05, Zanette+ ‘19]
• Linear MDPs: [Wang & Yang’18]; [Jin+ ’19]  (the transition matrix  is low rank)
• Linear Quadratic Regulators (LQR): standard control theory model

• FLAMBE / Feature Selection: [Agarwal, K., Krishnamurthy, Sun ’20]
• Linear Mixture MDPs: [Modi+’20, Ayoub+ ’20]
• Block MDPs [Du+ ’19]



Theorem: Structural Commonalities and Bilinear Classes
• Theorem: [Du, K., Lee, Lovett, Mahajan, Sun, Wang ’19] 

The following models are bilinear classes for some discrepancy function ℓ( ⋅ )
• Linear Bellman Completion: [Munos, ’05, Zanette+ ‘19]
• Linear MDPs: [Wang & Yang’18]; [Jin+ ’19]  (the transition matrix  is low rank)
• Linear Quadratic Regulators (LQR): standard control theory model

• FLAMBE / Feature Selection: [Agarwal, K., Krishnamurthy, Sun ’20]
• Linear Mixture MDPs: [Modi+’20, Ayoub+ ’20]
• Block MDPs [Du+ ’19]
• Factored MDPs [Sun+ ’19]



Theorem: Structural Commonalities and Bilinear Classes
• Theorem: [Du, K., Lee, Lovett, Mahajan, Sun, Wang ’19] 

The following models are bilinear classes for some discrepancy function ℓ( ⋅ )
• Linear Bellman Completion: [Munos, ’05, Zanette+ ‘19]
• Linear MDPs: [Wang & Yang’18]; [Jin+ ’19]  (the transition matrix  is low rank)
• Linear Quadratic Regulators (LQR): standard control theory model

• FLAMBE / Feature Selection: [Agarwal, K., Krishnamurthy, Sun ’20]
• Linear Mixture MDPs: [Modi+’20, Ayoub+ ’20]
• Block MDPs [Du+ ’19]
• Factored MDPs [Sun+ ’19]
• Kernelized Nonlinear Regulator [K.+ ’20]



Theorem: Structural Commonalities and Bilinear Classes
• Theorem: [Du, K., Lee, Lovett, Mahajan, Sun, Wang ’19] 

The following models are bilinear classes for some discrepancy function ℓ( ⋅ )
• Linear Bellman Completion: [Munos, ’05, Zanette+ ‘19]
• Linear MDPs: [Wang & Yang’18]; [Jin+ ’19]  (the transition matrix  is low rank)
• Linear Quadratic Regulators (LQR): standard control theory model

• FLAMBE / Feature Selection: [Agarwal, K., Krishnamurthy, Sun ’20]
• Linear Mixture MDPs: [Modi+’20, Ayoub+ ’20]
• Block MDPs [Du+ ’19]
• Factored MDPs [Sun+ ’19]
• Kernelized Nonlinear Regulator [K.+ ’20]
• And more….. 



Theorem: Structural Commonalities and Bilinear Classes
• Theorem: [Du, K., Lee, Lovett, Mahajan, Sun, Wang ’19] 

The following models are bilinear classes for some discrepancy function ℓ( ⋅ )
• Linear Bellman Completion: [Munos, ’05, Zanette+ ‘19]
• Linear MDPs: [Wang & Yang’18]; [Jin+ ’19]  (the transition matrix  is low rank)
• Linear Quadratic Regulators (LQR): standard control theory model

• FLAMBE / Feature Selection: [Agarwal, K., Krishnamurthy, Sun ’20]
• Linear Mixture MDPs: [Modi+’20, Ayoub+ ’20]
• Block MDPs [Du+ ’19]
• Factored MDPs [Sun+ ’19]
• Kernelized Nonlinear Regulator [K.+ ’20]
• And more….. 

• (almost) all “named” models (with provable generalization) are bilinear classes  
two exceptions: deterministic linear ; -state aggregationQ⋆ Q⋆



Theorem: Structural Commonalities and Bilinear Classes
• Theorem: [Du, K., Lee, Lovett, Mahajan, Sun, Wang ’19] 

The following models are bilinear classes for some discrepancy function ℓ( ⋅ )
• Linear Bellman Completion: [Munos, ’05, Zanette+ ‘19]
• Linear MDPs: [Wang & Yang’18]; [Jin+ ’19]  (the transition matrix  is low rank)
• Linear Quadratic Regulators (LQR): standard control theory model

• FLAMBE / Feature Selection: [Agarwal, K., Krishnamurthy, Sun ’20]
• Linear Mixture MDPs: [Modi+’20, Ayoub+ ’20]
• Block MDPs [Du+ ’19]
• Factored MDPs [Sun+ ’19]
• Kernelized Nonlinear Regulator [K.+ ’20]
• And more….. 

• (almost) all “named” models (with provable generalization) are bilinear classes  
two exceptions: deterministic linear ; -state aggregationQ⋆ Q⋆

• Bilinear classes generalize the: Bellman rank [Jiang+ ‘17]; Witness rank [Wen+ ’19]



Theorem: Structural Commonalities and Bilinear Classes
• Theorem: [Du, K., Lee, Lovett, Mahajan, Sun, Wang ’19] 

The following models are bilinear classes for some discrepancy function ℓ( ⋅ )
• Linear Bellman Completion: [Munos, ’05, Zanette+ ‘19]
• Linear MDPs: [Wang & Yang’18]; [Jin+ ’19]  (the transition matrix  is low rank)
• Linear Quadratic Regulators (LQR): standard control theory model

• FLAMBE / Feature Selection: [Agarwal, K., Krishnamurthy, Sun ’20]
• Linear Mixture MDPs: [Modi+’20, Ayoub+ ’20]
• Block MDPs [Du+ ’19]
• Factored MDPs [Sun+ ’19]
• Kernelized Nonlinear Regulator [K.+ ’20]
• And more….. 

• (almost) all “named” models (with provable generalization) are bilinear classes  
two exceptions: deterministic linear ; -state aggregationQ⋆ Q⋆

• Bilinear classes generalize the: Bellman rank [Jiang+ ‘17]; Witness rank [Wen+ ’19]
• The framework easily leads to new models (see paper).



The Algorithm: BiLin-UCB 
(specialized to the Linear Bellman Complete case)



The Algorithm: BiLin-UCB 
(specialized to the Linear Bellman Complete case)

• Find the “optimistic” : 
	

f ∈ ℱ
arg max

f
Vf(s0) + βσ( f )



The Algorithm: BiLin-UCB 
(specialized to the Linear Bellman Complete case)

• Find the “optimistic” : 
	

f ∈ ℱ
arg max

f
Vf(s0) + βσ( f )

• Sample  trajectories   and create a batch dataset:  
	 	

m πf
D = {(sh, ah, sh+1) ∈ trajectories}



The Algorithm: BiLin-UCB 
(specialized to the Linear Bellman Complete case)

• Find the “optimistic” : 
	

f ∈ ℱ
arg max

f
Vf(s0) + βσ( f )

• Sample  trajectories   and create a batch dataset:  
	 	

m πf
D = {(sh, ah, sh+1) ∈ trajectories}

• Update the cumulative discrepancy function function  
	 	

σ( ⋅ )

σ2( f ) ← σ2( f ) + ( ∑
(sh,ah,sh+1)∈D

Qf(sh, ah) − r(sh, ah) − Vf(sh+1))
2



The Algorithm: BiLin-UCB 
(specialized to the Linear Bellman Complete case)

• Find the “optimistic” : 
	

f ∈ ℱ
arg max

f
Vf(s0) + βσ( f )

• Sample  trajectories   and create a batch dataset:  
	 	

m πf
D = {(sh, ah, sh+1) ∈ trajectories}

• Update the cumulative discrepancy function function  
	 	

σ( ⋅ )

σ2( f ) ← σ2( f ) + ( ∑
(sh,ah,sh+1)∈D

Qf(sh, ah) − r(sh, ah) − Vf(sh+1))
2

• return: the best policy   foundπf



Theorem 2: Generalization in RL



Theorem 2: Generalization in RL
• Theorem: [Du, K., Lee, Lovett, Mahajan, Sun, Wang ’19] 

Assume  is a bilinear class and the class is realizable, i.e. . 
Using   trajectories, the BiLin-UCB algorithm 
returns an -opt policy (with prob. ).

ℱ Q⋆ ∈ ℱ
γ3

T ⋅ poly(H) ⋅ log(1/δ)/ϵ2

ϵ ≥ 1 − δ



Theorem 2: Generalization in RL
• Theorem: [Du, K., Lee, Lovett, Mahajan, Sun, Wang ’19] 

Assume  is a bilinear class and the class is realizable, i.e. . 
Using   trajectories, the BiLin-UCB algorithm 
returns an -opt policy (with prob. ).

ℱ Q⋆ ∈ ℱ
γ3

T ⋅ poly(H) ⋅ log(1/δ)/ϵ2

ϵ ≥ 1 − δ

• again,  is the max. info. gain γT γT := max
f0…fT−1∈ℱ

ln det (I + 1
λ

T−1

∑
t=0

Φ( ft)Φ( ft)⊤)



Theorem 2: Generalization in RL
• Theorem: [Du, K., Lee, Lovett, Mahajan, Sun, Wang ’19] 

Assume  is a bilinear class and the class is realizable, i.e. . 
Using   trajectories, the BiLin-UCB algorithm 
returns an -opt policy (with prob. ).

ℱ Q⋆ ∈ ℱ
γ3

T ⋅ poly(H) ⋅ log(1/δ)/ϵ2

ϵ ≥ 1 − δ

• again,  is the max. info. gain γT γT := max
f0…fT−1∈ℱ

ln det (I + 1
λ

T−1

∑
t=0

Φ( ft)Φ( ft)⊤)
•   for  in -dimensions 
 
γT ≈ d log T Φ d



Theorem 2: Generalization in RL
• Theorem: [Du, K., Lee, Lovett, Mahajan, Sun, Wang ’19] 

Assume  is a bilinear class and the class is realizable, i.e. . 
Using   trajectories, the BiLin-UCB algorithm 
returns an -opt policy (with prob. ).

ℱ Q⋆ ∈ ℱ
γ3

T ⋅ poly(H) ⋅ log(1/δ)/ϵ2

ϵ ≥ 1 − δ

• again,  is the max. info. gain γT γT := max
f0…fT−1∈ℱ

ln det (I + 1
λ

T−1

∑
t=0

Φ( ft)Φ( ft)⊤)
•   for  in -dimensions 
 
γT ≈ d log T Φ d

• The proof is “elementary” using the elliptical potential function.  
[Dani, Hayes, K. ’08]



Thanks!

• A generalization theory in RL is possible and different from SL!

• necessary: linear realizability insufficient. need much stronger assumptions.

• sufficient: lin. bandit theory  RL theory (bilinear classes) is rich.

• covers known cases and new cases 

• FLAMBE: [Agarwal+ ’20] feature learning possible in this framework.


• practice: these issues are relevant (“deadly triad”/RL can be unstable)

→

See https://rltheorybook.github.io/ for forthcoming book!

https://rltheorybook.github.io/
https://rltheorybook.github.io/

