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Markov Decision Processes: 
a framework for RL

• A policy: 



• Execute  to obtain a trajectory: 



• Cumulative -step reward: 

	 ,    

• Goal: Find a policy  that maximizes our value  from . 
Episodic setting: We start at ; act for  steps; repeat… 

π : States → Actions
π

s0, a0, r0, s1, a1, r1…sH−1, aH−1, rH−1
H

Vπ
H(s) = 𝔼π [

H−1

∑
t=0

rt s0 = s] Qπ
H(s, a) = 𝔼π [

H−1

∑
t=0

rt s0 = s, a0 = a]
π Vπ(s0) s0

s0 H



Challenges in RL 

1. Exploration 
(the environment may be 
unknown) 

2. Credit assignment problem 
(due to delayed rewards) 

3. Large state/action spaces: 
hand state: joint angles/velocities 
cube state: configuration  
actions: forces applied to actuators 

Dexterous Robotic Hand Manipulation 
OpenAI,  ‘19
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Part-0:  
A Whirlwind Tour of Generalization 

from Supervised Learning to RL



Generalization is possible in the IID supervised learning setting! 
 
To get -close to best in hypothesis class  , we need # of samples that is: 

• “Occam’s Razor” Bound (finite hypothesis class): need  
• Various Improvements: 

• VC dim ; Classification (margin  bounds): ;  
Linear regression:  
• Deep Learning:  the algorithm also determines the complexity control  

The key idea in SL: data reuse 
With a training set, we can simultaneously evaluate the loss of all hypotheses in our 
class!

ϵ ℱ
O(log( |ℱ | )/ϵ2)

O(VC(ℱ)/ϵ2) O(margin)/ϵ2)
O(dimension/ϵ2)
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Provable Generalization in Supervised Learning (SL)



Sample Efficient RL in  
the Tabular Case 
(no generalization here)

• 

• We have an (unknown) MDP.

• Thm: [Kearns & Singh ‘98] In the episodic setting,  

  samples suffice to find  an -opt policy. 
Key idea: optimism + dynamic programming 

• Lots improvements on the rate: 
[Brafman& Tennenholtz ’02][K. '03][Auer+ ‘09] [Agrawal, Jia ’17] 
[Azar+ ‘13],[Dann & Brunskill ‘15]


• Provable Q-learning (+bonus):  
[Strehl+ (2006)], [Szita & Szepesvari ‘10],[Jin+ ‘18]

S = #states, A = #actions, H = #horizon

poly(S, A, H,1/ϵ) ϵ



I: Provable Generalization in RL 
Q1: Can we find an -opt policy with no  dependence?ϵ S
• How can we reuse data to estimate the value of all policies in a policy class ? 

Idea: Trajectory tree algo  
dataset collection: uniformly at random choose actions for all  steps in an episode.  
estimation: uses importance sampling to evaluate every   

• Thm:[Kearns, Mansour, & Ng ‘00] 
To find an -best in class policy, the trajectory tree algo uses  samples 

• Only  dependence on hypothesis class size. 
• There are VC analogues as well. 

• Can we avoid the  dependence to find an an -best-in-class policy?  
Agnostically, NO! 
Proof: Consider a binary tree with -policies and a sparse reward at a leaf node.

ℱ

H
f ∈ ℱ

ϵ O(AH log( |ℱ | )/ϵ2)
log( |ℱ | )

2H ϵ

2H
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II: Provable Generalization in RL


• Q2: Can we find an -opt policy with no  dependence and 
 samples?


•Agnostically/best-in-class? NO.

•With various stronger assumptions, of course. 
 

What is the nature of the assumptions under which 
generalization in RL is possible? 

(what is necessary? what is sufficient?)

ϵ S, A
poly(H,1/ϵ, "complexity measure")



Today’s Lecture
What are necessary representational and distributional conditions that permit  
provably sample-efficient offline reinforcement learning? 

• Part I: bandits & linear bandits 
(let’s start with horizon  case) 

• Part II: Lower bounds: 
Linear realizability: natural conditions to impose 
Is RL possible? 

• Part III: Upper bounds: 
Are there unifying conditions that are sufficient?

H = 1



Part-I:  
Bandits (the  case) 

(Let’s set the stage for RL!)
H = 1
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Multi-armed bandits

•Very successful algo when  is small. 

•What can we do when the number of arms  is large?
A

A

How should we allocate  
T tokens to  “arms”  

to maximize our return? 
[Robins ’52, Gittins’79, Lai & Robbins ‘85 …]

A



    Bandits 

 
 

•decision: pull an arm
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    Linear (RKHS) Bandits 
 
 
 

•decision: choose some  
•e.g. 

x ∈ 𝒳
x ∈ R

Dealing with the large action case

• widely used generalization: The “linear bandit” model [Abe & Long+  ’99] 
successful in many applications: scheduling, ads…


• decision: , reward: , reward model: 
	 	 


• Hypothesis class  is set of linear/RKHS functions

xt rt
rt = f(xt) + noise, f(x) = w⋆ ⋅ ϕ(x)

ℱ
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Linear-UCB/GP-UCB: 
Algorithmic Principle: Optimism in the face of uncertainty

  

Naturally trades off exploration and exploitation 
Only picks plausible maximizers

x

f(x)

Pick input that maximizes upper confidence bound:

How should 
we choose βt?
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Regret of Lin-UCB/GP-UCB 
(generalization in action space)

 Theorem: [Dani, Hayes, & K. ’08], [Srinivas, Krause, K. & Seeger '10]  
Assuming  is an RKHS (with bounded norm), if we choose βt “correctly”,  

 where  

• Key complexity concept: “maximum information gain”   determines the regret 
•   for  in -dimensions 
• Think of  as the “effective dimension" 

• Easy to incorporate context 
• Also: [Auer+ ’02; Abbasi-Yadkori+ ‘11]

ℱ

γT := max
x0…xT−1∈𝒳

log det (I +
T−1

∑
t=0

ϕ(xt)ϕ(xt)⊤)
γT

γT ≈ d log T ϕ d
γT



Switch 
(LinUCB analysis)



Part-2: RL 
What are necessary conditions? 

Let’s look at the most natural assumptions.



Approx. Dynamic Programming  
with Linear Function Approximation

Basic idea: approximate the  values with linear basis functions 
.  (where )


• C. Shannon. Programming a digital computer for playing chess. 
Philosophical Magazine, ’50.


• R.E. Bellman and S.E. Dreyfus. Functional approximations and dynamic 
programming. ’59.


• Lots of work on this approach, e.g. 
[Tesauro, ’95], [de Farias & Van Roy ’03], [Wen & Van Roy ’13] 

What conditions must our basis functions (our representations) satisfy 
in order for his approach to work?

• Let’s look at the most basic question with “linearly realizable Q*” 

Q(s, a)
ϕ1(s, a), …ϕd(s, a) d ≪ #states, #actions



RL with Linearly Realizable Q*-Function Approximation

(Does there exist a sample efficient algo?)

• Suppose we have a feature map: .

• (A1: Linearly Realizable Q*): Assume for all , , there exists 

 s.t. 
	 	 	  
 

• Aside: the linear programing viewpoint.

• We have an underlying LP with  variables and  constraints.

• The LP is not general because it encodes the Bellman optimality 

constraints. 

• We have sampling access (in the episodic setting).

⃗ϕ (s, a) ∈ Rd

s, a h ∈ [H]
w⋆

1 , …w⋆
H ∈ Rd

Q⋆
h (s, a) = w⋆

h ⋅ ϕ(s, a)

d O(SA)



Linearly Realizability is Not Sufficient for RL

Theorem:

• [Weisz, Amortila, Szepesvári ‘21]:  

There exists an MDP and a  satisfying A1 s.t any online RL algorithm (with 
knowledge of ) requires  samples to output the value  
up to constant additive error (with prob. ).


• [Wang, Wang, K. ‘21]:  
Let’s make the problem even easier, where we also assume: 
A2 (Large Suboptimality Gap): for all , . 
The lower bound holds even with both A1 and A2. 

Comments: An exponential separation between online RL vs simulation access. 
[Du, K., Wang, Yang ’20]: A1+A2+simulator access (input: any ; output:  )

 there is sample efficient approach to find an -opt policy.

ϕ
ϕ Ω(min(2d,2H)) V⋆(s0)

≥ 0.9

a ≠ π⋆(s) V⋆
h (s) − Q⋆

h (s, a) ≥ 1/16

s, a s′ ∼ P( ⋅ |s, a), r(s, a)
⟹ ϵ



Construction Sketch: a Hard MDP Family 
(A ``leaking complete graph’')

•  is an integer (we will set )

• the state space: 

• call the special state  a “terminal state”. 

• at state , the feasible actions set is  

at , the feasible action set is .  
i.e. there are  feasible actions at each state.


• each MDP in this family is specified by an index 
 and denoted by .  

i.e. there are  MDPs in this family.

m m ≈ 2d

{1̄, ⋯, m̄, f}
f

ī [m]∖{i}
f [m − 1]

m − 1

a* ∈ [m] ℳa*
m

...

...

...

Lemma: For any , there exist  unit vectors  
in  s.t.  and , . 
We will set . 
(proof: Johnson-Lindenstrauss)

γ > 0 m = ⌊exp( 1
8 γ2d)⌋ {v1, ⋯, vm}

Rd ∀i, j ∈ [m] i ≠ j |⟨vi, vj⟩ | ≤ γ
γ = 1/4



The construction, continued
• Transitions: . 




• After taking action , the next state is either  or .  
This MDP looks like a ``leaking complete graph'' 


• It is possible to visit any other state (except for ); 
however, there is at least  probability of 
going to the terminal state . 


• The transition probabilities are indeed valid, because 

s0 ∼ Uniform([m])
Pr[ f |a1, a*] = 1,

Pr[ ⋅ |a1, a2] =
a2 : ⟨v(a1), v(a2)⟩ + 2γ

f : 1 − ⟨v(a1), v(a2)⟩ − 2γ
, (a2 ≠ a*, a2 ≠ a1)

Pr[ f | f, ⋅ ] = 1.
a2 a2 f

a*
1 − 3γ = 1/4

f

0 < γ ≤ ⟨v(a1), v(a2)⟩ + 2γ ≤ 3γ < 1.

...

...

...



The construction, continued
• Features: of dimension  defined as: 

 

note: the feature map does not depend of .

• Rewards:  

for , 

    

for , 
 

d

ϕ(a1, a2):= (⟨v(a1), v(a2)⟩ + 2γ) ⋅ v(a2), ∀a1 ≠ a2

ϕ( f, ⋅ ):= 0
a*

1 ≤ h < H
Rh(a1, a*):= ⟨v(a1), v(a*)⟩ + 2γ,

Rh(a1, a2):= − 2γ [⟨v(a1), v(a2)⟩ + 2γ], a2 ≠ a*, a2 ≠ a1

Rh( f, ⋅ ):= 0.
h = H

rH(s, a) := ⟨ϕ(s, a), v(a*)⟩

...

...

...



Verifying the Assumptions: Realizability and the Large Gap
Lemma: For all , we have  and the “gap” is .

Proof: throughout 

• First, let’s verify  is the value of the policy .  

By induction, we can show: 

 




• Proving optimality: for  
 

   is optimal

• Proving the large gap: for  

(s, a) Q*h (s, a) = ⟨ϕ(s, a), v(a*)⟩ ≥ γ/4
a2 ≠ a*
Qπ(s, a) = ⟨ϕ(s, a), v(a*)⟩ π(a) = a⋆

Qπ
h (a1, a2) = (⟨v(a1), v(a2)⟩ + 2γ) ⋅ ⟨v(a2), v(a*)⟩,

Qπ
h (a1, a*) = ⟨v(a1), v(a*)⟩ + 2γ

a2 ≠ a*, a1

Qπ
h (a1, a2) ≤ 3γ2, Qπ

h (a1, a*) = ⟨v(a1), v(a*)⟩ + 2γ ≥ γ > 3γ2

⟹ π
a2 ≠ a*

V*h (a1) − Q*h (a1, a2) = Qπ
h (a1, a*) − Qπ

h (a1, a2) > γ − 3γ2 ≥
1
4

γ .



The information theoretic proof:
Proof: When is info revealed about , indexed by  ?

• Features: The construction of  does not depend on .

• Transitions: if we take , only then does the dynamics 

leak info about  (but there  actions)

• Rewards: two cases which leak info about  

(1) if we take  at any , then reward leaks info about   
(but there  actions) 
(2) also, if we terminate at  , then the reward  
leaks info about on 

• But there is always at least  chance of moving to 

• So need at least  trajectories to hit 


 need  samples to discover .

Caveats: Haven’t handled the state  cafefully.

ℳa* a*
ϕ a⋆

a*
a* O(2d)

a⋆

a* h a*
m = O(2d)

sH ≠ f rH
a*

1/4 f
O((4/3)H) sH ≠ f

⟹ Ω(min(2d,2H)) ℳa*
a*

...

...

...

Open Problem: Can we prove a lower bound with  actions?A = 2



Interlude: 
Are these issues relevant in practice?



These Representational Issues are Relevant for Practice! 
(related concepts: distribution shift, “the deadly triad”, offline RL)

Theorem [Wang, Foster, K., ’20]:   
Analogue for “offline” RL: linearly realizability is also not sufficient. 
Practice: [Wang, Wu, Salakhutdinov, K., 2021]:  
Does it matter in practice?  Say given good ““deep-pre-trained- features”? YES!

Offline dataset is a mix of two sources: 
running          &           random

Use SL to evaluate  
the running policy with 
“deep-pre-trained- features”

Massive error amplification 
even with 50/50% mixed offline data 



Part-3:  
What are sufficient conditions? 
Is there a common theme to positive results?



Provable Generalization in RL

Can we find an -opt policy with no  dependence and 

 samples?
ϵ S, A

poly(H,1/ϵ, "complexity measure")

Agnostically/best-in-class? NO.

With linearly realizable ? Also NO. 

• With various stronger assumptions, YES! Many special cases:

• Linear Bellman Completion: [Munos, ’05, Zanette+ ‘19]

• Linear MDPs: [Wang & Yang’18]; [Jin+ ’19]  (the transition matrix  is low rank)

• Linear Quadratic Regulators (LQR): standard control theory model


• FLAMBE / Feature Selection: [Agarwal, K., Krishnamurthy, Sun ’20]

• Linear Mixture MDPs: [Modi+’20, Ayoub+ ’20]

• Block MDPs [Du+ ’19]

• Factored MDPs [Sun+ ’19]

• Kernelized Nonlinear Regulator [K.+ ’20]

• And more…..


• Are there structural commonalities between these underlying assumptions/models?

• almost: Bellman rank [Jiang+ ‘17]; Witness rank [Wen+ ’19]

Q*



Intuition: properties of linear bandits  
(back to  RL problem)H = 1

• Linear (contextual) bandits:  
context:   action:   
observed reward:  


• Hypothesis class:  
Let  be the greedy policy for  

An important structural property:

• Data reuse: difference between  and  is estimable when playing  

	

s a
r = w⋆ ⋅ ϕ(s, a) + ϵ
{f(s, a) = w( f ) ⋅ ϕ(s, a), w ∈ 𝒲}

πf f

f r πg
Ea∼πg

[ f(s, a) − r] = ⟨w( f ) − w⋆, Eπg
[ϕ(s, a)]⟩



Special case: linear Bellman complete classes 
(stronger conditions over linear realizability)

• Linear hypothesis class:  
with associated (greedy) value  and (greedy) policy: 


• Completeness: suppose 

• Completes is very strong condition!  

Adding a feature to  can break the completeness property. 

Analogous structural property holds for :

• Data reuse: Bellman error of any   is estimable when playing : 

 

(where expectation is with respect to trajectories under ) 

• (recall) Bellman optimality: suppose 

ℱ = {Qf : Qf(s, a) = w( f ) ⋅ ϕ(s, a)}
Vf(s) πf

𝒯(Qf) ∈ ℱ

ϕ

ℱ
f πg

Eπg[Qf(sh, ah) − r(sh, ah) − Vf(sh+1)] ≤ ⟨wh( f ) − 𝒯(wh( f )), Eπg[ϕ(sh, ah)]⟩
πg

Q⋆ − 𝒯(Q⋆) = 0



BiLinear Regret Classes: structural properties to 
enable generalization in RL

• Hypothesis class: ,   
with associated state-action value, (greedy) value and policy: 

• can be model based or model-free class. 

Def: A  forms an (implicit) Bilinear class class if:

• Bilinear regret: on-policy difference between claimed reward and true reward 

	 


• Data reuse: there is function  s.t. 
	

{f ∈ ℱ}
Qf(s, a), Vf(s), πf

(ℱ, ℓ)

Eπf[Qf(sh, ah) − r(sh, ah) − Vf(sh+1)] ≤ ⟨wh( f ) − w⋆
h , Φh( f )⟩

ℓf(s, a, s′ , g)
Eπf[ℓf(sh, ah, sh+1, g)] = ⟨wh(g) − w⋆

h , Φh( f )⟩



Theorem: Structural Commonalities and Bilinear Classes
• Theorem: [Du, K., Lee, Lovett, Mahajan, Sun, Wang ’19] 

The following models are bilinear classes for some discrepancy function 

• Linear Bellman Completion: [Munos, ’05, Zanette+ ‘19]

• Linear MDPs: [Wang & Yang’18]; [Jin+ ’19]  (the transition matrix  is low rank)

• Linear Quadratic Regulators (LQR): standard control theory model


• FLAMBE / Feature Selection: [Agarwal, K., Krishnamurthy, Sun ’20]

• Linear Mixture MDPs: [Modi+’20, Ayoub+ ’20]

• Block MDPs [Du+ ’19]

• Factored MDPs [Sun+ ’19]

• Kernelized Nonlinear Regulator [K.+ ’20]

• And more….. 

• (almost) all “named” models (with provable generalization) are bilinear classes  
two exceptions: deterministic linear ; -state aggregation


• Bilinear classes generalize the: Bellman rank [Jiang+ ‘17]; Witness rank [Wen+ ’19]

• The framework easily leads to new models (see paper). 

ℓ( ⋅ )

Q⋆ Q⋆



The Algorithm: BiLin-UCB 
(specialized to the Linear Bellman Complete case)

• Find the “optimistic” : 
	 


• Sample  trajectories   and create a batch dataset: 
	 	 


• Update the cumulative discrepancy function function  
	 	




• return: the best policy   found

f ∈ ℱ
arg max

f
Vf(s0) + βσ( f )

m πf
D = {(sh, ah, sh+1) ∈ trajectories}

σ( ⋅ )

σ2( f ) ← σ2( f ) + ( ∑
(sh,ah,sh+1)∈D

Qf(sh, ah) − r(sh, ah) − Vf(sh+1))
2

πf



Theorem 2: Generalization in RL
• Theorem: [Du, K., Lee, Lovett, Mahajan, Sun, Wang ’19] 

Assume  is a bilinear class and the class is realizable, i.e. . 
Using   trajectories, the BiLin-UCB algorithm 
returns an -opt policy (with prob. ).


• again,  is the max. info. gain 


•   for  in -dimensions 
 

• The proof is “elementary” using the elliptical potential function.  
[Dani, Hayes, K. ’08]

ℱ Q⋆ ∈ ℱ
γ3

T ⋅ poly(H) ⋅ log(1/δ)/ϵ2

ϵ ≥ 1 − δ

γT γT := max
f0…fT−1∈ℱ

ln det (I +
1
λ

T−1

∑
t=0

Φ( ft)Φ( ft)⊤)
γT ≈ d log T Φ d



Thanks!

• A generalization theory in RL is possible and different from SL!

• necessary: linear realizability insufficient. need much stronger assumptions.

• sufficient: lin. bandit theory  RL theory (bilinear classes) is rich.

• covers known cases and new cases 

• FLAMBE: [Agarwal+ ’20] feature learning possible in this framework.


• practice: these issues are relevant (“deadly triad”/RL can be unstable)

→

See https://rltheorybook.github.io/ for forthcoming book!

https://rltheorybook.github.io/
https://rltheorybook.github.io/

