CS 229br Lecture 6: Causality, Fairness, Privacy Boaz Barak

Yamini Bansal

Official TF

Javin Pombra Official TF **Dimitris Kalimeris** Unofficial TF

HAKVARD

ON ERING

HAR

Gal KaplunPUnofficial TFL

Preetum Nakkiran Unofficial TF

Outline

- Part I: Causality
- Part II: Fairness

Causality

Patterns, Predictions, and Actions imes + o C $ilde{}$ mlstory.org

PATTERNS, PREDICTIONS, AND ACTIONS

A story about machine learning

Moritz Hardt and Benjamin Recht

Causality

Correlation *≠* Causation

But what is causation?

Causality theory

Understand the conditions under which correlation = causation

Setup:

- Observables: A, B, C, D, ...
- Interventions: "do $A \leftarrow a$ "

Correlation: $\Pr[B = b | A = a]$ Causation: $\Pr[B = b | do A \leftarrow a]$

		on: Pr[on: Pr[•		ercise	over- Weight	[Heart disease	
Sce	nario	1:	$X \leftarrow B($	(1/2)		Scei	nario 2:		$W \leftarrow B(1$	(4)
W ←	$\begin{cases} 0, \\ P(1/2) \end{cases}$	X = 1		$T \leftarrow \begin{cases} 0, \\ P(t) \end{cases}$	X = 1 1/2), $X = 0$			X	$\leftarrow \begin{cases} 0, \\ B(1/3), \end{cases}$	W = 1 W = 0
		2), 7 – (1/2), X = 0			_	•	
	X	W	Н	Prob				H	$I \leftarrow \begin{cases} 0, \\ B(1/2) \end{cases}$	X = 1 , $X = 0$
	1	0	0	1/2				_		
	0	0	0	1/8					Scenario 1	Scenario
	0	0	1	1/8		Pr[W	= 1 X = 0		1/2	1/2

1/8

1/8

	Scenario 1	Scenario 2
$\Pr[W=1 X=0]$	1/2	1/2
$\Pr[W = 1 \mid \frac{\text{do } X}{\text{do } X} \leftarrow 0]$	1/2	1/4

				A = c		ercise over- Weight	Heart disease	
Sce	nario	1: X	$X \leftarrow B$	(1/2)		Scenario 2:	$W \leftarrow B(z)$	L/4)
W ←	$\begin{cases} 0, \\ B(1/2) \end{cases}$	X = 1 2), $X = 0$		$I \leftarrow \begin{cases} 0, \\ B(1) \end{cases}$	X = 1 1/2), $X = 0$	L	$X \leftarrow \begin{cases} 0, \\ B(1/3) \end{cases}$	
	X	W	Н	Prob			$H \leftarrow \begin{cases} 0, \\ B(1/2) \end{cases}$	X = 1), $X = 0$
	1	0	0	1/2				
	0	0	0	1/8			Scenario 1	Scenario 2
	0	0	1	1/8		$\Pr[W=1 X=0]$	1/2	1/2
	0	1	0	1/8		$\Pr[W = 1 \mid \text{do } X \leftarrow 0]$	1/2	1/4
	Сс	innot	disti	nguisł	n Scenario	1 and 2 from obs	servations	alone!

Estimating causal proba	abilities	Χ	$X \leftarrow B($	(1/2)]	
Assume: Know causal graph						
Goal: Compute $\Pr[A = a \text{do } B \leftarrow b]$	$W \leftarrow \begin{cases} 0, \\ B(1/2) \end{cases}$	X = 1 2), $X = 1$	L O	$I \leftarrow \begin{cases} 0, \\ B(\end{cases}$	X = (1/2), X	= 1 = 0
$\Pr[H = 1 W = 0] = 1/6$		X	W	H	Prob	
$\Pr[H = 1 \text{do } W \leftarrow 0] = 1/4$		1	0	0	1/2	
$\prod_{i=1}^{n} - \prod_{i=1}^{n} 0 = 1/4$	Known from	0	0	0	1/8	
	observations	0	0	1	1/8	
Controlling for X:		0	1	0	1/8	
$\Pr[H = 1 \operatorname{do} W \leftarrow 0] = \Pr[H = 1 W = 0, X]$	$X = 0] \Pr[X = 0]$	0	1	1	1/8	
Apriori unknown $+ \Pr[H = 1 W = 0]$	X = 1 Pr[$X = 1$]					

Casual Models

"Frequentist": Pr[A | do B] is frequency of times that A occurs if we do B

"Bayesian": $\Pr[A \mid do B]$ is probability A would have happened in "counter-factual" world where we did B

Time

Thm: If X, Y not confounded then $\Pr[Y = y | \text{do } X \leftarrow x] = \Pr[Y = y | X = x]$

Treatment effect: $Pr[C \mid do V \leftarrow 1, P]$ vs $Pr[C \mid do V \leftarrow 0, P]$

Conditioning

Conditioning

Average Treatment Effect

 $T \in \{0,1\}$ – Treatment variable

Def: *T*, *Y* "ignorable" controlling for *Z* if: $T \perp (Y_0, Y_1) \mid Z$ i.e: choice of T = 0,1 independent of $Y \mid do T \leftarrow t$

Average Treatment Effect

 $T \in \{0,1\}$ – Treatment variable Goal: Estimate $\mathbb{E}[Y_1] - \mathbb{E}[Y_0]$

Def: *T*, *Y* "ignorable" controlling for *Z* if: $T \perp (Y_0, Y_1) \mid Z$ i.e: choice of T = 0,1 independent of $Y \mid do T \leftarrow t$

Claim: If T, Y ignorable controlling for Z then

$$\Pr[Y = y \mid do T \leftarrow t] = \sum \Pr[Y = y \mid T = t, Z = z] \Pr[Z = z]$$

Pf:

$$\sum \Pr[Y = y \mid T = 0, Z = z] \Pr[Z = z] = \sum \Pr[Y_0 = y \mid Z = z] \Pr[Z = z]$$

Propensity scores:
Learn model
$$e(z) \approx \mathbb{E}[T|Z = z]$$

Let $e(z) = \mathbb{E}[T|Z = z]$

CLAIM: If Z admissible, $\mathbb{E}[Y \mid \text{do } T \leftarrow 1] = \mathbb{E}\left[\frac{Y \cdot T}{e(Z)}\right]$

Pf: $\Pr[Y = y | do T \leftarrow 1] = \sum_{z} \Pr[Y = y | T = 1, z] \Pr[z]$

For $y \neq 0$

$$= \sum_{z} \Pr[z] \frac{\Pr[Y=y,T=1|z]}{\Pr[T=1|z]} = \mathbb{E}_{z} \left[\frac{\Pr[Y=y,T=1|z]}{e(z)} \right] = \mathbb{E}_{z} \left[\frac{\Pr[YT=y|z]}{e(z)} \right]$$

 $\mathbb{E}\left[Y \mid \text{do } T \leftarrow 1\right] = \sum_{y} \Pr[Y = y \mid \text{do } T \leftarrow 1] \cdot y$

$$= \sum_{y} \mathbb{E}_{z} \left[\frac{\Pr[YT = y|z] y}{e(Z)} \right] = \mathbb{E}_{z} \left[\frac{Y \cdot T}{e(Z)} \right]$$

Observe (Z, T, Y), learn model $f(z) \approx \mathbb{E}[Y|Z = z]$

 $f(z) \approx \psi(Z) + \tau \cdot e(z)$ $\Rightarrow \quad Y - f(z) \approx \tau \cdot (T - e(z))$ Can estimate from data

Instrumental variables w

W is unobserved: can't control for

Assume
$$Y = \tau \cdot T + f(W)$$
 $Cov(Z, f(W)) = 0$
 $\tau = \text{treatment effect}$

$$\Rightarrow \quad \tau = \frac{Cov(Z,Y)}{Cov(Z,T)}$$

Counterfactuals

Let *u* realization of $U_1 \dots U_n$

 $Y_{X \leftarrow x}(u)$ = output of Y if U = u and X = x

Fairness

 $\equiv \bigwedge$

Fairness and machine learning

Limitations and Opportunities

Solon Barocas, Moritz Hardt, Arvind Narayanan RESEARCH-ARTICLE

The (Im)possibility of fairness: different value systems require different mechanisms for fair decision making

Authors: Sorelle A. Friedler, Carlos Scheidegger, Suresh Venkatasubramanian Authors Info & Affiliations (Less)

Publication: Communications of the ACM • March 2021 • https://doi.org/10.1145/3433949

NIPS 2017 Tutorial on Fairness in Machine Learning

Solon Barocas, Moritz Hardt

Note: Focus on fairness in classification, not representation

On the Dangers of Stochastic Parrots: Can Language Models Be Too Big?

Emily M. Bender* ebender@uw.edu University of Washington Seattle, WA, USA

Angelina McMillan-Major aymm@uw.edu University of Washington Seattle, WA, USA Timnit Gebru* timnit@blackinai.org Black in AI Palo Alto, CA, USA

Shmargaret Shmitchell shmargaret.shmitchell@gmail.com The Aether

Google Algorithm Detects Lung Replaced by Cheaper Softu Cancer Better Than Human Doctors UR JOB?

BY STEPHANIE MLOT 05.21.2019 :: 8:1

04.24.12 04:46 PM STEVEN LEVY

Can an Algorithm Write a Better News Story Than a Human Reporter?

Are Self-Driving Cars on the Road to

ROBO RECRUITING

Can an Algorithm Hire Better Than a Human?

Claire Cain Miller @clairecm JUNE 25, 2015

Hiring and recruiting might seem like some of the least likely jobs to be automated. The whole process seems to need human skills that computers

Risk of Recidivism

	WHITE	AFRICAN AMERICAN
Labeled Higher Risk, But Didn't Re-Offend	23.5%	44.9%
Labeled Lower Risk, Yet Did Re-Offend	47.7%	28.0%

Angwin, Larson, Mattu, Kirchner 2016

Gender detection

99.7% correct

65.3% correct

Buolamwini, Gebru, 2018

Non-ML unfairness

Are Emily and Greg More Employable Than Lakisha and Jamal? A Field Experiment on Labor Market Discrimination

Marianne Bertrand

Sendhil Mullainathan

AMERICAN ECONOMIC REVIEW VOL. 94, NO. 4, SEPTEMBER 2004 (pp. 991-1013) "White names receive **50 percent more callbacks** for interviews. Callbacks are also more **responsive to resume quality** for White names than for African-American ones."

Meta-analysis of field experiments shows no change in racial discrimination in hiring over time

D Lincoln Quillian, Devah Pager, Ole Hexel, and Arnfinn H. Midtbøen

+ See all authors and affiliations

PNAS October 10, 2017 114 (41) 10870-10875; first published September 12, 2017;

Algorithms help?

Original Articles

Automated underwriting in mortgage lending: Good news for the underserved?

Susan Wharton Gates, Vanessa Gail Perry & Peter M. Zorn

Pages 369-391 | Published online: 31 Mar 2010

To predict and serve?

Predictive policing systems are used increasingly by law enforcement to try to prevent crime before it occurs. But what happens when these systems are trained using biased data? **Kristian Lum** and **William Isaac** consider the evidence – and the social consequences

Arrests

Drug usage

Positive feedback loop

Predicted crime

FIGURE 2 (a) Number of days with targeted policing for drug crimes in areas flagged by PredPol analysis of Oakland police data. (b) Targeted policing for drug crimes, by race. (c) Estimated drug use by race

Making it formal

Unfairness definitions

Components:

- Protected class*
- Unfairness measurement

Disparate treatment

Disparate impact

Race (Civil Rights Act of 1964); Color (Civil Rights Act of 1964); Sex (Equal Pay Act of 1963; Civil Rights Act of 1964); Religion (Civil Rights Act of 1964); National origin (Civil Rights Act of 1964); Citizenship (Immigration Reform and Control Act); Age (Age Discrimination in Employment Act of 1967); Pregnancy (Pregnancy Discrimination Act); Familial status (Civil Rights Act of 1968); Disability status (Rehabilitation Act of 1973; Americans with Disabilities Act of 1990); Veteran status (Vietnam Era Veterans' Readjustment Assistance Act of 1974; Uniformed Services Employment Rights Act); Genetic information (Genetic Information Nondiscrimination Act)

Blue Population

Orange Population

https://research.google.com/bigpicture/attacking-discrimination-in-ml/

Blue Population

Orange Population

0 10 20 30 40 50 60 70 80 90 100 0 10 20 30 40 50 60 70 80 90 1(

loan threshold: 0

ck granted loan / pays back

loan threshold: 0

denied loan / would default granted loan / defaults denied loan / would pay back granted loan / pays back

Total profit = -79200

Correct 50%	
loans granted to paying	
applicants and denied	
to defaulters	

Incorrect 50% loans denied to paying applicants and granted to defaulters

••••••••••••	

True Positive Rate 100%

percentage of paying

Correct 50% loans granted to paying applicants and denied to defaulters

Incorrect 50% loans denied to paying applicants and granted to defaulters

Positive Rate 100%

percentage of all applications getting loans applications getting loans

Profit: -39600

percentage of paying

True Positive Rate 100%

Positive Rate 100%

percentage of all applications getting loans

Profit: -39600

Maximize profit

Blue Population

Orange Population

True Positive Rate 60%

percentage of paying applications getting loans

Positive Rate 34% percentage of all

applications getting loans

Profit: 12100

True Positive Rate 78% percentage of paying applications getting loans

Profit: 20300

Positive Rate 41%

percentage of all applications getting loans

Ignore group

Calibrated from

lender POV

Unfair from

applicant POV

Blue Population

Orange Population

Profit: 17000

Profit: 8600

Demographic parity

Blue Population

Orange Population

0 10 20 30 40 50 60 70 80 90 100 0 10 20 30 40 50 60 70 80 90 100

	loans granted to paying applicants and denied to defaulters	loans denied to paying applicants and granted to defaulters	Correct 84% loans granted to paying applicants and denied to defaulters	Incorrect 16% loans denied to paying applicants and granted to defaulters
		**************************************		Same total loans
Accuracy advantage split	True Positive Rate 64% percentage of paying applications getting loans	Positive Rate 37% percentage of all applications getting loans	True Positive Rate 71% percentage of paying applications getting loans	Positive Rate 37% percentage of all applications getting loans
between lender and applicant	Profit: 11900		Profit: 18900	

Equal opportunity

Blue Population

Orange Population

10 20 30 40 50 60 70 80 90 100 0 10 20 30 40 50 60 70 80 90 100

Real world example: FICO scores

Hardt, Price, Srebro 2016

COMPAS Debate

Data*	Black		White	
	Low Risk	High Risk	Low Risk	High Risk
Did not recidivate	1000	800	1150	350
Recidivate	550	1400	450	500
Defendant POV Pr[HR No rec.]	$\frac{800}{1800} \approx 44\%$		$\frac{350}{1450} \approx$	24%
Predictor POV Pr[<i>No Rec</i> . <i>HR</i>]	800 2200	≈ 36%	$\frac{350}{850} \approx 4$	41%

Fairness and causaility

Berkeley graduate admissions, 1973

44% of male applicants admitted35% of female applicants admitted

Department level:

Female acceptance rate *higher*

	UC Berkeley admissions data from 1973.						
	Men		Women				
Departi	mentApplie	edAdmitte	d (%)Applied	Admitted (%)			
А	825	62	108	82			
В	520	60	25	68			
С	325	37	593	34			
D	417	33	375	35			
Е	191	28	393	24			
F	373	6	341	7			

Content of boxes matter (e.g. Griggs v. Duke Power Co., 1971)

Bottom line

Can't come up with universal observational fairness criteria

Fairness is based on assumptions on:

- Representation of data
- Relation to unmeasured inputs and outcomes
- Causal relation of inputs, predictions, outcomes

Friedler, Scheidegger, Venkatasubramanian 2021