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Digression: Frequentism vs Bayesianism

"The probability of winning a battle has no place in our theory ... any
more than the physical concept of work can be applied to the ‘work’
done by an actor reciting his part.”, Richard von Mises, 1928

| am unable to see why ‘objectivity’ requires us to interpret every
probability as a frequency ... in most problems probabilities are
frequencies only in an imaginary universe invented just for the
purpose of allowing a frequency interpretation.”, E.T. Jaynes, 1976

“To the statistician probability appears simply as the ratio which a part
bears to the whole ... Mr. Keynes adopts a psychological definition. It
measures the degree of rational belief”, R. Fischer 1923



Digression: Frequentism vs Bayesianism

Samples Perform
Setup: from D task wrt D

X

===

Can measure with
samples from D

P

Goal: Find h(x) that minimizes L, (h)

For now: assume no
computational
limitations




Setup:

Goal: Find h(x) that minimizes L, (h)

Frequentist:

Define family D of potential distributions

Find transformation x — h(x) minimizing cost if D € D

: > Probabilit D:
h(:) =arg min maxEz. pLp(h(xX)) %"frc;)rv?arldI I}c/)c())\lzienrg"
;
Y

X—h(x) DED |

Estimable with sampling access to D

* Makes no sense if D (s deterministic process



Setup: .
oo W,

: P :I:_l/ Dy |£>@|:h>

|
Goal: Find h(x) that minimizes L, (h)

J‘ Prior \

Bayesian: Assume D = D;; where w ~ P are latent variables

Probability over posterior:
"backward looking”

et Qf(V_V)) = P(w |Dy = X) 4 Posterior 2

h(x) = arg mhin Ex~o.Lp(h)

\ J
|

Probability over inaccessible latent variables

How to choose prior?

* Makes sense even if D . o
One approach — maximum entropy principle.

** Can do more than min




Setup: .

- W, 7 h
B I il S |:[>@|:[>

|
Goal: Find h(x) that minimizes L, (h)

Computational Constraints

Frequentist: h(:) = arg flr_)n}%&) max Ez_.pLp(h(x))

Minimize over smaller set

of transformations

Bayesian:  h(X) = arg mhin Ew~q.Lp(h)
N

Approximate posterior by
simpler distribution




Part |: Intro to statistical physics



Statistical physics

——

temperature

{—



Statistical physics

U of Colorado PhET https://phet.colorado.edu/



https://phet.colorado.edu/sims/html/states-of-matter-basics/latest/states-of-matter-basics_en.html

Statistical physics 101



Atomic state: x € {0,1}" System “wants” to have

o large E,._, W (x) P4 #°
System state: p distribution over {0,1}" ° g &%

‘Utility”/ negative energy function W: {0,1}" = R
T = temperature High temperature —
system “wants” to have large H(p)

Equilibrium: p = arg max Ey-,W(x)+7-H(p)

(

.

Variational principle: p(x) x exp(z™! - W(x)) = exp(z™! - W(x) — A,(W))

\

S

=
"Boltzman dis’ﬁ A, (W) =log [exp(t™ - W(x))




Atomic state: x € {0,1}" System “wants” to have
System state: p distribution over {0,1}" large .., W(x) g&:

"Utility”/ negative energy function W: {0,1}" - R
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T = temperature % High temperature -

system “wants” to have large H(p)
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[Variational principle: p(x) « exp(z~1 - W(x))

“Boltzman distribution”

Example 1: Ising model

T x € {+1}" represents “spin”
MRRATE WO =) Ty xy +)/ S
t{tit[t|t[t]?

IRRGNRE I~

HAHEBEBEBERE ‘ {xi,xixj}i’j are “sufficient statistics”




l Variational principle: p(x) « exp(t~! - W (x)) I

Example 1: Ising model

x € {+1}" represents “spin”

W) =] 2 jxixj +] X i




v Ay
“\L
.\\‘“ )

IA‘ ;

Variational principle: p(x) < exp(t~! - W(x))
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Example 2: Sherrington Kirpatrick Model

Ising on random graph — disordered mean field model

x € {+1}" represents “spin” W (x) = Xw; jx;X; w; i~ N(0,1)

Go gle Scholar sherrington kirkpatrick

Articles About 9,280 results (0.06 sec)



[Variational principle: p(x) < exp(t~! - W(x)) J

Example 2: Posterior distribution

x = hidden variable with uniform prior

Make k independent observations 0, ..., 0, about x

p(x) o Pr|x satisfies 0] - Pr|x satisfies 0,] --- Pr[x satisfies O]

= exp(—log ). Pr|x satisfies 0;])

"High temperature” = “low learning rate”



Proof of variational principle ﬁ@fexp@*'ww

fThm: Let p(x) x exp(z™! - W(x)) =exp(t™' W(x)—A,(W)) A

Then p = argmaxE, ,W(x) + 7 H(p)
q p y
PF: ogp(x)
H(p) = — j(T_l - W(x) - AT(W))p(x)dx ! Independent
of x

— —T_l . IEXNPW(X) + ]Ex~p AT(W)

= | Claim: 7-A,(W) = 7-H(p) + Ex-p, W(x)

\ J | J
Y \ Y J

Free Energy  Canonical  (neg) internal
entropy energy




Proof of variational principle
(Thm: Let p(x) cexp(z™!-W(x)) =exp(t™ - W(x)— A, (W)) A

Then p =argmaxE, ,W(x)+7-H(p)
. p

PF: Let g be other dist

J

0<t-Ag(qllp)=7-Eylogq —7-E;logp
/
=—1-H(qQ) —T1 - Eyqu ' -Wk)+1-4;(W)

e

=7 H(p) + ExpyW(x) —7-H(q) —Ex gW(x) 20

Claim: 7-A;(W) = 7-H(p) + Exp W () B




Proof of variational principle

.

(Thm: Let p(x) < exp(t™! - W(x)) =exp(z™t - W(x)—A,(W)) )

Then p = argmaxE, ,W(x) + 7 H(p)
p

v,

Claim: t-A,(W)= 7-H(p) + Ey.p W(x)

r

Corw=1:A(W) =maxH(q) + E,.,W(x)
q

\,

| divergence

Recall: VAE
min Ag; (E(x) Il N(O,I))

min||x — D(E () I?

Energy/reconstruction ‘

In particular, for every g, A(W) = H(q) + E,.,W (x)

\
| log |ike|i@L\

|

ELBO

)
Computable for
“tractable” q




Sampling from Boltzman distribution

p(x) = exp(t™ - W(x) = A;(W)) ~d A4, (W) = log [ exp(z™" - W(x))

Typically: Can compute W (x) , can't compute A, (W)
= Can compute p(x)/p(x")!

Gibbs /MH sampling: Let x, random and fori = 1,2 e.q. ' agrees with x,_, in
Choose ¥’ “near” x all but one coordinate
i—1

v x', w.p.min{1,p(x")/p(x)}
Yo, otherwise — .
ﬁ Rejection sampling




Gibbs /MH sampling: Let x, random and fori = 1,2, ...

Choose x' “near” x:_
1—1

o x', w.p.min{1,p(x")/p(x)}
' Xi_1, otherwise

Claim: p is stationary distribution of MH yd balance
PF:  p(x'[x)p(x) = p(x[x")p(x") = min{p(x), p(x')}

=>If x;_, ~ p, probability ratios same for x;

Under certain connectivity conditions, can prove stationary distribution (s unique

Main question Is time to converge



Optimization: Simulated annealing

Input: W:{0,1}"* - R
Goal: Find x = arg min W (x)

ldea/Hope: For T = oo, ...,0: sample x ~ p,

Sampling x ~ p,, easy

At each stage, move from x to x’ with probability
exp(t™!- (W(x") —W(x)))



Andreas Muller https://www.youtube.com/watch?v=iag Fpr4KZc



https://www.youtube.com/watch?v=iaq_Fpr4KZc

Barriers in simulated annealing

Li, Xu, Taylor, Studer, Goldstein ‘18

https://www.cs.umd.edu/~tomg/projects/landscapes/

Charbonneu et al Nature Comms 2014


https://www.cs.umd.edu/%7Etomg/projects/landscapes/

Part Il: From physics to learning



Bayesian Analysis

W X
| Ir =N
BRI (il P |

I — — — — J

ST X;(W) = log Pr{x; ]
I Easy to compute/consgl B —
p(W)
PW |1 o 2n) = s PO [W)p (2 |W) - p (x| W) - < exp(=2Xi (W)

I hard to compute I

For fixed x, probability on w is Boltzmann with roles flipped

x defines energy function = inference = sampling from posterior



Exponential distributions Sesuie 7 = 1
pw () = exp(W (x) = AW)) = exp((w, %) — A(w))

Assume W (x) = (w, X) 4 X € R™ are sufficient statistics of x

Example: W (x) = X jyeg Wi, jXiX]

w,z) | X = (X122, X1X3, X3X4, X2 X5, X3X¢) @

To know [E W (x) enough to know 1 = [E

X~Pw x"’pW

1
1+eXp (W3,6)

exp(W3 )
‘LLS 1+eXp(W3 6)

+ (1 —pu3) -

n linear equations on n marginals

In example: ug =

Given marginal pg can sample x, & recursively sample x; ... xc



Exponential distributions Assume 7 = 1
pw(x) = exp((w, %) — A(w))
Average statistics: Let u = E

X~Pw
é )
By variational principle: | p, =arg max H(q)
qstIqu U
\ S

Recall: AW) = H(pw) + Eyx-p,, W(x) = H(py,) + (w, 1)

Facts: VA(w) = E, X= u HA(W) = Cova(f) S 04 A Is convex



Exponential distributions

pw(x) = exp((w, X) — A(w))
Average statistics: Let y = E, ., X

éa )

pw =arg max H(q)
qs.tEsx=p

\. J

A(w) = H(py) + (W, 1)

r

H(p) = max H(p)

pstEyx=u

{ u|H(u) = a} convex set

= ar max w, I
& 5 H(u)=H (pw)< H)
\_

py IS the maximum entropy distribution consistent with observations u

Parameter Sampling* Mean

(compute A(w))

Inference*
(compute A* (i) = —H (i)

representation representation

*When p Is posterior
then roles flip



Fxamples (see Wainright&Jordan)

High dim normal: x e R, W(x) = —(x — ) "2 (x — )

ISing model: x € {O,l}d ) W(X) = ZWL'XL' + Z(i,j)EE Wi i XiXj

Only case we R - . 5
will deal today X = (6,xx") = (X1, -, X, X1, X1X2, -, Xn—1Xn, Xp)

Gaussian MRF, Mixture of Gaussians, latent Dirichlet allocation,...

Parameter Sampling*

Mean
representation (compute A(w))

representation

Inference*
(compute A*(1) = —H(w))




Mean Field Approximation Sampling*

(compute A(w))

pu () = exp((w, £) — A(W)) N

w 2
Alw) = max(w, IEQJ?) + H(q)
q
\ / Hi,j = Hilkj

Restrict to g which is product distribution over x; .... x4 (€ {0,139

H(a) = —aloga — (1 —a)log(1l — a)

Alw) > max Witk + 2wy i + Y H ()
U

Coordinate Ascent mean-field
Not concave J Variational Inference (CAVI)

Concave in every coordinate (©)

Generalizations: Other tractable g



Bayesian Analysis
CTTTT W

7
! \r
BRI (il P | )

I — — — — J

p(W | X1 ... xn) o exp(=XX;(W))

Sampling*
(compute A(X))

‘ obserﬂ m ;’tent ‘
¥ w

Mean-field approximation: for fixed x, probability on w is
product (with parameters depending on x)




Part lll: Solution landscape & replica method



Support of distribution

Hot

Cold

Inverse temperature



Support of distribution

Hot

entropy
ﬁ

~1 Cold

Inverse temperature



Support of distribution

Entropy
discountinuous

entropy

Cold

Inverse temperature



Support of distribution

Hot

Often: Entropy continuous,
higher order transition

Cold

Inverse temperature



Replicas

Suppose p,, looks like “ball” around x,

Pick x4, ..., x,, 1.i.d from p,,

High dimension = x; — x(, x; — x, roughly orthogonal

(X1, %1) - (Xq, Xp) 1 - q
Overlap matrix Q=< : : ) %( )

(xn:x1> (xn:xn> q - 1



Replica method

Setup: w comes from prob distribution W/
Goal: Compute E,,A(w) = Elog | exp({w, X))

Easy: Compute logE,, | exp({w, %)) = log [ E,,exp({w, X))

EyA(w) = lim E, exp(n-Aw)) — 1 _ le(fx exp((w,a?))) —1

n—0 n =0 n

Take limit of R )
Integer to 0! F ~ lim Ly fxl,...,xn eXP((W' Xp ot xn)) —1

n—0 n
replicas




Replica method  Goal: Compute E, A(w) = Eylog [ exp((w, £))

E,, | exp({w, %, + -+ %,)) — 1
E,A(w) = lim XX -

n—-0 n

|
= lim
n—-0 n

E, exp({w,%; +--+X,)) — 1

(X1,%1) =+ (X1, Xp)
Q:( : : )

(xn: xl) o (xn: xn)

1;"';x

For many natural I/,
E, exp({w,%; + -+ X,;)) only depends on overlaps of { x;};=1 »

1) Guess shape of dominant Q (ansatz)

2) Check if makes sense



Examples:

‘ signal \ ! noise \

Spiked matrix/tensor: Y = AS + N

p(S',N'|Y) o exp(B{Y — AS',N’)?) - Pr[S'] Overlap with

true signal

Want to analyze IESINP(.W)(S,S’)Z as function of A

Statistical limits of spiked tensor models

Amelia Perry*T!, Alexander S. Wein**!, and Afonso S. Bandeira’?

08 1 12 14 16 18 2
A



Examp\eSI signal noise

Teacher student model: X, Y = (X, fs(X) + N)

XY =, fs(X)+ N)

o
wn

—— Epoch =0 — Epoch = 50
—— Epoch =5 —— Epoch = 200

error

C
© o =4 o
- [N} w »

lassification

Capturing the learning curves of generic features maps
- for realistic data sets with a teacher-student model

Bruno Loureiro*!, Cédric Gerbelot'?, Hugo Cui?, Sebastian Goldt*,
Florent Krzakala', Marc Mézard?, and Lenka Zdeborova®

training loss

.0 . y g ¥ y ' . -
0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
sample complexity = n/d



Replica Symmetry Breaking



Symmetry breaking

Hot

TRSB

Cold

Inverse temperature



Symmetry breaking

Hot
TRsSB
= T
O
1=
()]
Cold

Inverse temperature



Symmetry breaking

Hot
TRSB
> o T
g \IbL
'y
—1 -1 Cold

TRSB
Inverse temperature



Symmetry breaking

Hot

% | -

entropy

‘T_l COld

1
-1
Inverse temperature

TRSB



Symmetry breaking

Hot

% | -

entropy

A
—1

-1 |
Rl T Cold

Inverse temperature




Symmetry breaking

Hot
O
O TRSB
O
> T
O
Cold

Inverse temperature



Possible scenarios | 2

R |-RsE 2. RSB

Replica 1 Replica

Symmetry ggmgy RSB, 3RSB.... FRSB
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