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Learning

S e
Data |:> A |:> h




Learning

Could be
private!

D

Data

Model / summaries / etc

Simple Demographics Often Identify People Uniquely

Latanya Sweeney
Carnegie Mellon University
latanval@andrew.cmu.edu

Name

Address

Ethnicity
Visit date

Date
registered

Party

affiliation

Diagnosis

Total charge

Date last
voted
Voter List

Medical Data

1997

2000

Robust De-anonymization of Large Sparse Datasets

Arvind Narayanan and Vitaly Shmatikov

The University of Texas at Austin

2008

User Secret Type Exposure Extracted?
A CCN 52 v
B 55N 13

55N 16
C 55N 10

55N 22

58N 32 v
F 58N 13

CCN 36
G CCN 29

CCN 48 v

Table 2: Summary of results on the Enron email dataset. Three
secrets are extractable in < | hour; all are heavily memorized.

Carlini, Liu, Erlingsson, Kos, Song ‘19



Deep Learning

Data |:> A |:> h
Can reconstruct Can reconstruct
data from model model from queries

qgueries




Extracting Training Data from Large Language Models

Nicholas Carlini' Florian Tramer? Eric Wallace? Matthew Jagielski®
Ariel Herbert-Voss>® Katherine Lee! Adam Roberts' Tom Brown’
Dawn Song’ Ulfar Erlingsson’ Alina Oprea® Colin Raffel!

lGoogle *Stanford 3UC Berkeley *Northeastern University °OpenAl SHarvard "Apple

Category Count
US and international news 109
. Log files and error reports 79 .
Pref
E;:)(Strou debura Stroudebar ’ License, terms of use, copyright notices 54 Memorized Sequence Occurrences in Data
g 9 Lists of named items (games, countries, etc.) 54 String Length Docs Total
4 For'um or Wiki entry 53 vo. J..v5 37 ) 10
GPT-2 valid URLs >0 7c. JEL.18 40 1 22
Named individuals (non-news samples only) 46 o J...o2 54 | 36
Promotional content (products, subscriptions, etc.) 45 -2 64 1 49
(Memorized text | ¥ High entropy (UUIDs, base64 data) 35 ab"--"- c
Horporation Seabank Centre Contact info (address, email, phone, twitter, etc.) 32 £f... ~.af 32 1 64
Porer (¢ SOUTPOTt Code 31 c7.. .. .ov 43 1 83
: -com Configuration files 30 0x.. ..o 10 l 96
Religious texts 25 76.. -84 17 I 122
) Pseudonyms 15 a7l . JJB...co 40 1 311
Donald Trump tweets and quotes 12
Web forms (menu items, instructions, etc.) 11
Tech news 11

Lists of numbers (dates, sequences, etc.) 10




TECHBY VICE

Why Is Google Translate Spitting Out Sinister
Religious Prophecies?

Maori ~ g English ~ N
Translate from English
dog dog dog dog dog dog dog dog dog Doomsday Clock is three minutes at
dog dog dog dog dog dog dog dog dog twelve We are experiencing characters
dog and a dramatic developments in the
world, which indicate that we are
increasingly approaching the end
times and Jesus' return

Somali = English ~ [E] <€)
Translate from Irish

ag ag ag ag ag ag ag ag ag ag ag ag As a result, the total number of the

ag ag ag ag ag ag ag ag ag members of the tribe of the sons of

Gershon was one hundred fifty
thousand



Data E:> A I::> h

Solutions:

* Cryptographic: 100% privacy but at efficiency/control cost
 Differential privacy: “X% privacy” but X vs utility tradeoff not great
« Heuristics: Hope for 100%, might get 0%



Part |I. Protecting ML using crypto



Divergence: One-time pac
Private key encryption: k ~ {0,1}"

Encryption: E: {0,1}"* x {0,1}* - {0,1}™
Decryption: D: {0,1}"* x {0,1}™ - {0,1}*

Correctness: V.V, o 1y¢ » Dk (Ex (X)) = x
Can’'t guess message
better than chance

—

Perfect Secrecy: V alg A

I, JABC) =x] <2
k ~ {0,1}"



Divergence: One-time pad
Private key encryption: k ~ {0,1}" Encryption: E: {0,1}" x {0,1} - {0,1}™
Decryption: D: {0,1}"* x {0,1}" — {0,1}*

Correctness: ViV, cco 1y¢ » Dk (Ex () = x

Perfect Secrecy: V alg A xN&Fl}B[A(Ek(X)) =x|<27!
k ~ {0,1}"

Shannon’s Two Theorems:

Thm 1: The one-time pad achieves perfect secrecy with n = ¢ ©¢necrabee

Thm 2: Every perfectly-secret scheme requires n > ¢



Divergence: One-time pad
Private key encryption: k ~ {0,1}" Encryption: E: {0,1}"* x {0,1}* - {0,1}™
Decryption: D: {0,1}"* x {0,1}" - {0,1}*

Correctness: ViV, cco 1y¢ » Dk (Ex () = x

Perfect Secrecy: V alg A xN&Fl}{,[A(Ek(X)) =x|<27!
k ~ {0,1}"

Thm 1: The one-time pad achieves perfect secrecy withn = ¢
PF. Ex(x)=x@®k D(y) =y Dk

Pr[A(k @ x) =x] =Pr[A(y) =x] <27

Crucial:
|keys| = |msgs|

Equivalent description: k, x € {+1}", E,(x) = (x1kq, ..., X V)

Extension: k,x € Z , E(x) = (x; + k;y mod t, ..., x,, + k,, mod t)



Fully Homomorpnhic Encryption (FHE)

[ | o

Note: Can also use Multiparty Secure Computation (MPC)




Fully Homomorpnhic Encryption (FHE)




FH E Secret key: k ~ {0,1}"

Encryption: randomized E: {0,1}" x {0,1} — {0,1}"™

Does not get
secret key!

Decryption: D: {0,1}" x {0,1}"* - {0,1} >

Evaluation: randomized NAND: {0,1}"* x {0,1}"* — {0,1}""

* Can also consider public key variant



FHE Secret key: k ~ {0,1}"
Encryption: randomized E: {0,1}" x {0,1} = {0,1}™

Decryption: D: {0,1}" x {0,1}"* - {0,1}
Evaluation: randomized NAND: {0,1}™ x {0,1}™ — {0,1}"™"

Correctness: VVpef0,1} » Dk (Ex (b)) = b ‘/>ATV< exp(—n) D

Evaluation: YV, ,rec0.1y » NAND(Ej (), Ex(b")) = Ei(—(b Ab"))

Computatlonal . Can't distinguish between
secrecy*: vV alg A of time < exp(n) E(0) and E, (1)

1
b or 1}[A(Ek(b)) =b|<= + exp(—n)

~{0,1}"
* Even if we get exp(n) samples with same key




FHE: What's known

Gentry 2009: FHE exists under reasonable assumptions

... FHE exists under standard assumptions

... Implementations

HElib

HElib is an open-source (Apache License v2.0) software library that implements homomorphic encryption (HE).
Currently available schemes are the implementations of the Brakerski-Gentry-Vaikuntanathan (BGV) scheme with
bootstrapping and the Approximate Number scheme of Cheon-Kim-Kim-Song (CKKS), along with many
optimizations to make homomorphic evaluation run faster, focusing mostly on effective use of the Smart-
Vercauteren ciphertext packing techniques and the Gentry-Halevi-Smart optimizations. See this report for a

description of a few of the algorithms using in this library.

Please refer to CKKS-security.md for the latest discussion on the security of the CKKS scheme implementation in
HElib.

Since mid-2018 HElib has been under extensive refactoring for Reliability, Robustness & Serviceability,
Performance, and most importantly Usability for researchers and developers working on HE and its uses.

HElib supports an “assembly language for HE", providing low-level routines (set, add, multiply, shift, etc.),
sophisticated automatic noise management, improved BGV bootstrapping, multi-threading, and also support for
Ptxt (plaintext) objects which mimics the functionality of Ctxt (ciphertext) objects. The report Design and
implementation of HElib contains additional details. Also, see CHANGES.md for more information on the HElib

releases.

Microsoft SEAL

Microsoft SEAL is an easy-to-use open-source (MIT licensed) homomorphic encryption library developed by the
Cryptography and Privacy Research Group at Microsoft. Microsoft SEAL is written in modern standard C++ and
is easy to compile and run in many different environments. For more information about the Microsoft SEAL

project, see sealcrypto.org.



. Encryption: randomized E: {0,1}" x {0,1} = {0,1}'"
What S FH E gOOd fOr? Decryption: D: {0,1}" x {0,1}'"* — {0,1}

Evaluation: randomized NAND: {0,1}™ x {0,1}" — {0,1}™

[

Data |:>

E, (x) |:> Many NANDs |:> E,. (h)

Challenges: Only get encrypted model/summary
Huge computational overhead

(Matrix vector mult on <1000 dimensions takes few secs on 32 core 250GB PC)
Halevi, Shoup 2018



https://eprint.iacr.org/2018/244

What is FHI

Data

Ey(x)

Challenges:

Metrics Required:

— ACCUrac -I:.lll

— Memory overhead (important in v

Data Set — Real private financial data
FHE algorithm : CKKS

— Approximate numbers

https://eprint.iacr.org/2019/1113

Encryption: randomized E: {0,1}" x {0,1} = {0,1}'"

Large European Bank

1

Model : Neural Networks

- Large & complex deep neural networks on encrypted
:

— Predictive Text Classification

Metrics Required:

— Accuracy

- Amount of data that could be processed in a certain
timeframe (8 hrs)

Data Set — Public data

FHE algorithm : CKKS

- ,.1-._|';| proximate numbers

Research paper submitted to conference

Only get encrypted model/summary

Huge computational overhead

Some partial preliminary successes


https://arstechnica.com/gadgets/2020/07/ibm-completes-successful-field-trials-on-fully-homomorphic-encryption/

Ditferential Privacy S

Apple’s ‘Differential Privacy’ Is About Collecting Your

F dati d Trends® i
Eondations sod Tepkt 0. Data---But Not YourData

9:3-4

=. Microsoft | Microsoft On the Issues OurCompany ~  News and Stories ~  Press Tools

New differential privacy platform co-
developed with Harvard's OpenDP unlocks
data while safeguarding privacy

Jun 24, 2020 | John Kahan - VP,_Chief Data Analytics Officer

At WWDC, Apple name-checked the statistical science of learning as much as possible about a group while learning as
little as possible about any individual in it.

Introducing TensorFlow Privacy:
Learning with Differential Privacy
for Training Data

TensorFlow @
Mar 6, 2019 - 7 min read , m n ﬂ b

Posted by Carey Radebaugh (Product Manager) and Ulfar Erlingsson
(Research Scientist)

%: OpenDP About~ Opportunities~ Community

Developing Open Source
‘Tools for Differential Privacy

OpenDP is a community effort to build trustworthy, open-source software
tools for statistical analysis of sensitive private data. These tools, which
we call OpenDP, will offer the rigorous protections of differential privacy
for the individuals who may be represented in confidential data and
statistically valid methods of analysis for researchers who study the data.




Ditferential Privacy

Data |:> A |:> h

= { X1, - ) Xn}

ata belongmg
to i-th person

Def: A is € differentially private if

posterior probability x; € X € e*€ x prior probability x; € X

, . A must be
VX,X St |X AX — 1, Vh jandomaed

Prl[A(X) = h] € eX¢ Pr[A(X') =




Ditferential Privacy

Data

X = {xl, viny Xy vne

Def: A is € differentially private if
VX, X' st [ X AX'| =1, VA

=

) Xn}

=B

O K €
Think 6§ =0

Pr[A(X) € S] € e*¢Pr[A(X') € S] + 6



Differential Privacy[ ... Y VI ' Y

X ={Xq, ..., Xj) e, X }

Def: A is € differentially private if
VX, X st. | X AX'|=1,VS
Pr[A(X) € S] € eX€ Pr[A(X") € S]

Bad event
Bad event

happenedtoi ] —~ € .
PI‘[ because their ] =€ PI‘[ happens ]
anyway

data in X

Example: A(X) reveals short people more likely to default on loans



Differential Privacy[ ... Y VI ' Y

X ={Xq, ..., Xj) e, X }

Def: A is € differentially private if
VX, X st [ X AX'|=1,VS
Pr[A(X) € S] € e*€ Pr[A(X") € S]

Why not Pr[A(X) € S] € Pr[A(X') €S| te? ( Not privatD

Think: A(X) = {x;,, ..., x; } random iy, ..., i , k K n

Pr[A(X) € S| — Pr[A(X") € S]| < %



Ditferential privacy composition

[Thm: If Ais e-DP and A" is €'-DP then B(X) = A(X),A(X") is € + €'-DP J

Proof: Vh,h' and | X A X'| < 1

PrlA(X), A" (X) = (h,h")] < e€Pr[A(X") = h] - e€ Pr[A'(X') = k'] B

Ditferential privacy under post-processing

[ Thm: If Ais e-DP and B(X) = f(A(X)) then B(X) is e-DP J

Proof: Vhand [ X A X'| <1

Prf(A(X)) = h] 2 Pr[A(X) = h'] Z PrlA(X") = h'] = e€ Pr[f(A(X")) = h] .
href=1(n) h'ef~1(h)




DP guarantees

Def: A training mechanism X — f,, is broken if 34 s.t.

A(f,,) outputs x € X

Claim: If mechanism is (¢, 6)-DP then broken with prob < % + 6

(%: prob random guessing x)

Membership Inference Attacks Against
Machine Learning Models

Reza Shokri Marco Stronati* Congzheng Song Vitaly Shmatikov
Cornell Tech INRIA Cornell Cornell Tech
shokril@cornell.edu marcolstronati.org c¢s2296@cornell.edu shmat@cs.cornell.edu



Ditferentially private statistics:

Publish estimates f; = ¥ ex fi(®) , o, fie ® Dpnrx fie(X)

In differentially private way

Why can’t we just publish sums?

* 30 C19+ cases in Cambridge
29 C19+ cases age < 70

e 12 C19+ cases liver disease

* 11 C19+ cases age < 70 and liver disease



Ditferentially private statistics:

Publish estimates f, ~ Xycx f1(0) 5 o) fie ® B fie (%)

In differentially private way Pix)
i Symmetric
Laplace mechanism: Assume f;(x) € [0,1] [\ exponential

o

fi= ) fi(0) +Lap(k/e)

xNX _..-'-l--:- ----"-.__

THM: Laplace mechanism is -DP Pr[Lap(h) = x] =%exp(—|x|/b)

In practice, o =~ \/n 0% = 2b?
acceptable




Publish estimates fi = Y. cxr fi(X) , o, fre ® Snx fie(x)  Assume f;(x) € [0,1]

Fix)

Laplace mechanism:

fi= ) fi(x) + Lap(k/e)
x~X 1 1-

D Pr[Lap(b) = x] = o5, €xp(=Ix]/b)
[ THM: Laplace mechanism is e-DP o b2

J OO — XD =1

\——" _
PF: Focus on single f f(X) = z fx) fX):= z f(x)
xeX xeX

. 1 1 A
Pr[ £(X0) = v] = —exp(=€lv = FO)]) <5—exp(e —elv = F(XD]) <e-Pr[ (X)) =v]




Publish estimates fi = Y. cxr fi(X) , o, fre ® Snx fie(x)  Assume f;(x) € [0,1]

Fix)

Laplace mechanism:

fi= ) fi(x) + Lap(k/e)
x~X 1 e
Pr[Lap(b) = x] = —exp(~|x|/b)
[ THM: Laplace mechanism is e-DP ] 52 = o2

Generalization: Achieve e-DP for std = k/e estimator for any f: X — R™

st.|f(X)—f(XD| <kforall | X AX'|=1

\ )
|

Sensitivity of f



Important

Differential privacy is definition

Laplace mechanism is one approach to achieve definition

Can also use other noise distributions (e.g. Gaussian)

(typically get (¢, 5)-DP in such cases)



DP_SG D J L; = loss for batch i

sensitivity = b/n

Replace step w <« w —nV, (w)

withw «w —n [VLC(W) + N(O,O‘ZCZI)]

j L¢ = gradient for every sample clipped at C

4 N
THM: For const €, C can achieve (¢,0(1))-DP with const ¢ as long as
n 2
# steps < (—)
" b y

Deep Learning with Differential Privacy
October 25, 2016

Martin Abadi- Andy Chu- lan Goodfellow!
H. Brendan McMahan* llya Mironov* Kunal Talwar-
Li Zhang-



Fvaluation

MNIST

CIFAR 10

accuracy

accuracy
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Protection from memorization in practice

Test Estimated Extraction
Optimizer € Loss  Exposure  Possible?
RMSProp 0.65 1.69 [.1
RMSProp  1.21 1.59 2.3
% RMSProp 526 141 1.8
= RMSProp 89 1.34 2.1
= RMSProp 2x10° 1.32 3.2
RMSProp 1x10° 1.26 2.8
SGD = 2.11 3.6
a®
o SGD N/A  1.86 9.5
> RMSProp N/A  1.17 31.0 v

Unintended Memorization in Neural Networks

Nicholas Carlini!-2

The Secret Sharer: Evaluating and Testing

Chang Liu?

Ulfar Erlingsson'

Jernej Kos®

Dawn Song?



Private aggregation of teacher ensembles

SEMI-SUPERVISED KNOWLEDGE TRANSFER
FOR DEEP LEARNING FROM PRIVATE TRAINING DATA

Nicolas Papernot* Martin Abadi Ulfar Erlingsson

Penncvlvania State TTnivercitv (Gnnole Rrain (onole

lgoogle.com

Dataset | ¢ | 6 | Queries | Non-Private Baseline | Student Accuracy
MNIST | 2.04 | 10™° 100 99.18% 98.00%
MNIST | 8.03 | 10~° 1000 99.18% 98.10%
SVHN | 5.04 | 10°° 500 92.80% 82.72%
SVHN | 8.19 | 107 1000 92.80% 90.66%

Figure 4: Utility and privacy of the semi-supervised students: each row is a variant of the stu-
dent model trained with generative adversarial networks in a semi-supervised way, with a different
number of label queries made to the teachers through the noisy aggregation mechanism. The last

column reports the accuracy of the student and the second and third column the bound ¢ and failure
/4__>[ probability ¢ of the (¢, d) differential privacy guarantee.
* S I AT m
Sensitive ’ Aggregate - i
Data é ‘» Data3 | Teacher3 7, Teacher I R ¢ - Querles
\ 4 /7
Teach Predicted < - Incomplete
gactier i completion Public Data
| =——— Training =  ---c-:-. P Prediction —— + — - Data feeding |

Figure 2: Overview of the approach: (1) an ensemble of teachers is trained on disjoint subsets of the
sensitive data, (2) a student model is trained on public data labeled using the ensemble.



SCALABLE PRIVATE LEARNING WITH PATE

Nicolas Papernot*
Pennsylvania State University
ngp5056@cse.psu.edu

Shuang Song*
University of California San Diego
shs@37@eng.ucsd.edu

Ilya Mironov, Ananth Raghunathan, Kunal Talwar & Ulfar Erlingsson

Google Brain

{mironov, pseudorandom, kunal,ulfar}@google.com

Queries | Privacy Accuracy
Dataset | Aggregator answered | bound € | Student | Baseline

LNMax (Papernot et al., 2017) 100 2.04 98.0%

MNIST | LNMax (Papernot et al., 2017) 1,000 8.03 08.1% 99.2%
Confident-GNMax (7'=200, ¢1=150, o2=40) 286 1.97 98.5%
LNMax (Papernot et al., 2017) 500 5.04 82.7%

SVHN | LNMax (Papernot et al., 2017) 1,000 8.19 90.7% 92.8%
Confident-GNMax (7'=300, ¢1=200, 02=40) 3,098 4.96 91.6%
LNMax (Papernot et al., 2017) 500 2.66 83.0%

Adult 85.0%

y Confident-GNMax (7=300, o1=200, 02=40) 524 1.90 83.7% ’
LNMax 4,000 4.3 72.4%

Glyph | Confident-GNMax (7'=1000, o1=500, o2=100) 10,762 2.03 75.5% 82.2%
Interactive-GNMax, two rounds 4,341 0.837 73.2%




Heuristics

Avoid DP issues:
* Accuracy hit
* Large values for €

 Slower



_| . d InstaHide: Instance-hiding Schemes for Private Distributed

Learning*

NSLa
Recall FHE-based training:

Yangsibo Huang! Zhao Song’ Kai Li® Sanjeev Aroral

[

E; (1) ... Ex () |:> Many NANDs |:> E,. (h)

Challenges: Only get encrypted model/summary
Huge computational overhead



InstaHide




InstaHide

=




InstaHide | Public

data
X1y 2 X E> L E> 5(.1, ,fm E> y E> h

Requires > Can te
definition + proof gmpmcal

Hope: 14, ...., X,,, "encrypt” the original data, but are still good enough to train on.

Intuition: Mixup* data augmentation

Require f(ax; + fx, + vx3) = (a,B,7)

* Zhang, Cisse, Dauphin, Lopez-Paz ‘18



Public
data

v
s

InstaHide

+,-'{2}r_i i--.:r+,.:|,3}r.

(0,0,0,1)

(0,1,0,0)
Bird Alrplane )

MNIST CIFAR-10 CIFAR-100 ImageNet

Vanilla training 09.5+£0.1 948+0.1 T7.9+0.2 774
DPSGD* 98.1 72.0 N/A N/A
Iﬁﬂtﬂﬂide“lﬂdpk= L. in interence E}H.E x= {}.2 E-:i]. ..4 0= {}-2 TH-E :I: [:I.E ??.ﬁ
ImstaHide;, e k=1 098.24+03 91.2402 731403 1.4

InstaHide oz k=4, in inference

InstaHide  qqs =1

InstaHide oz k=6, in inference

InstaHide  qzs -

98.1 £10.2
978+ 0.2
97.4+10.2
973+ 0.1

90.3 £ 0.2
90.7T £ 0.2
89.6 £ 0.3
0.8+ 0.3

2.8+ 0.3
73.2+0.2
72.1+10.2
T1.9+ 0.3

g g
Private train set Public dataset
(large, e.g. ImageNet)

1) x" = Axt + A,x2% + A3x3

2) X = (x1kq, -, xnkn)
for k ~ {£1}"

+A*K= .

{0, 44, 0, 43)
Bird Airplane

1. Public — off-the-shelf
2. Large — gives more security

+ Aux?

OTP
iInspired

e |—1,+1]"



Attack on InstaHige

An Attack on InstaHide:
Is Private Learning Possible with Instance Encoding?

Nicholas Carlini Samuel Deng Sanjam Garg
ncarlini@google. con 2d43013@columbia.edu sanjamglfberkeley.adu
Somesh Jha Saeed Mahloujifar Mohammad Mahmoody
jha@cs.wisc.edn sfar@princeton.adu mohammad@virginia. edu
Shuang Song Abhradeep Thakurta Florian Tramér
shuangsong@google . com athakurta@google . com tramer@cs.stanford.edu

Figure |: Our solution to the InstaHide Challenge. Given 5,00 InstaHide encoded 1images released

by the authors, under the strongest settings of InstaHide, we recover a visually recogmzable version
of the onginal (private) images in under an hour on a single machine.



AttaCk deSCH pt|On x; = R/G/B value of pixel, normalized to [—1, +1]

1) x' = /11.7(:1 + /12x2 + /13X3 + ).4_.9(:4

2% = Gefke k) A=wBR B

{EI1{JEI}| {EID{J1]| {{],-'1{];1]
Bird Airplan

f k _|_ 1 n Private train set Public dataset 1. Public — off-the-shelf
O r ~ - (large, e.g. ImageNet) 2. Large — gives more security

Obs 1: x; ... x,, = (kyxq, ..., knx;,,) for k € {£1}" allows to recover (|x4], ..., [x,])

Absolute
value

Orlglnal |
image




AttaCk deSCﬂ pt|Oﬂ x; = R/G/B value of pixel, normalized to [—1, +1]

1) x" = Axt + A,x% + A3x3 + A,x*

Flip pixel
Ay % J +A; % +Aax + 4, x signs randomly
! !
il ™ el e | ¥ - . )
1 L 5 is £ N ol 'lll
I ] wnf v

O (0, 41,0, 43)
Nrplam Bird Airplane

Public datamt 1. Public — off-the-shelf
(large, e.g. ImageNet) 2. Large — gives more security

Average =~

All came from same
original private image



AttaCk deSCHpUOn x; = R/G/B value of pixel, normalized to [—1, +1]

1) x" = Axt + A,x2% + A3x3 + A,x*

X = (lxql, ... xn )
Z)x_(lxlw"»xn (0,1,0,0) (0, 1., 0, 43)
Bid — Alfplane Bird Airplane
Pri».rat Public dtt 1. Public — off-the-shelf
(large, e.g. ImageNet) 2. Large — gives more security

Reconstruct encoding graph

All came from same
original private image

= abs(A1x; + A,x; + noise)



At
0

2)  Figure 1: Our solution to the InstaHide Challenge. Given 5,000 InstaHide encoded images released
by the authors, under the strongest settings of InstaHide, we recover a visually recogmizable version
of the original (private) images in under an hour on a single machine.

matrii
O

InstaHide challenge:
100 private images
5000 encoded images

5000 non-linear eq in 100n vars

Use GD to find  arg min||abs(4X) — )?Hz

. Xt
X = abs(A1x; + A,x; + noise) e



Black Box recovery

Cryptanalytic Extraction of
Neural Network Models

Nicholas Carlini® Matthew Jagielski® Ilva Mironov?

Architecture  Parameters Approach Queries (2, 10 ”::l {£.0) max|8 H|
TRA-32-1 25,120 [JCBE*20] pt#-2 242 245 317
{..}'IJ.I.'H- 2[‘“‘.! 2 288 2 27.4 2 4.2
TR4-128-1 100,480 [JCB*20] g44-2 -8 5.1 g~ 18
".‘J'lll.':."l 3! 1.5 2 2.4 2 247 2 ! I |
10-10-10-1 210 [RK20] 2+ g-ib-d  g=3d 2-12
{..}'IJ.I.'H- Zl‘li-.ll 2 2.7 2 47598 2 ;1]
10-20-20-1 420 [RK20] g4 oo’ ot =1
".‘J'llm le_.] 2 &G 2 AN.T 3 . i
40-20-10-10-1 1,110 Ours glis godLT o geEad g1
B0-40-20-1 4,020 Ours g8 e .

Table 1. Efficacy of our extraction attack which is orders of magnitude more precise
than prior work and for deeper neural networks orders of magnitude more query effi-
cient, Models denoted a-b-¢ are fully connected neural networks with input dimension
i, one hidden layver with b newrons, and ¢ outputs: for formal definitions see Section 2.
Entries denoted with a § were unable to recover the network alter ten attempts,



Learning Couldbe Qd./p
Data |:> A |:> h

Solutions:

* Cryptographic: 100% privacy but at efficiency/control cost
 Differential privacy: “X% privacy” but X vs utility tradeoff not great
* Heuristic: Hope for 100%, might get 0%
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