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Model / summaries / etcCould be 
private!
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𝐴𝐴Data ℎ

Model / summaries / etcCould be 
private!

Solutions:
• Cryptographic: 100% privacy but at efficiency/control cost
• Differential privacy: “X% privacy” but X vs utility tradeoff not great
• Heuristics: Hope for  100%, might get 0%



Part I: Protecting ML using crypto



Divergence: One-time pad
Private key encryption: 𝑘𝑘 ∼ {0,1}𝑛𝑛

Encryption: 𝐸𝐸: {0,1}𝑛𝑛 × {0,1}ℓ → {0,1}𝑚𝑚

Decryption: 𝐷𝐷: {0,1}𝑛𝑛 × {0,1}𝑚𝑚 → {0,1}ℓ

Correctness: ∀𝑘𝑘∀𝑥𝑥∈{0,1}ℓ ,𝐷𝐷𝑘𝑘 𝐸𝐸𝑘𝑘 𝑥𝑥 = 𝑥𝑥

Perfect Secrecy: ∀ alg 𝐴𝐴

Pr
𝑥𝑥∼{0,1}ℓ

𝐴𝐴 𝐸𝐸𝑘𝑘 𝑥𝑥 = 𝑥𝑥 ≤ 2−ℓ

𝑘𝑘 ∼ {0,1}𝑛𝑛

Can’t guess message 
better than chance



Divergence: One-time pad
Private key encryption: 𝑘𝑘 ∼ {0,1}𝑛𝑛 Encryption: 𝐸𝐸: {0,1}𝑛𝑛 × {0,1}ℓ → {0,1}𝑚𝑚

Decryption: 𝐷𝐷: {0,1}𝑛𝑛 × {0,1}𝑚𝑚 → {0,1}ℓ
Correctness: ∀𝑘𝑘∀𝑥𝑥∈{0,1}ℓ ,𝐷𝐷𝑘𝑘 𝐸𝐸𝑘𝑘 𝑥𝑥 = 𝑥𝑥

Perfect Secrecy: ∀ alg 𝐴𝐴 Pr
𝑥𝑥∼{0,1}ℓ

𝐴𝐴 𝐸𝐸𝑘𝑘 𝑥𝑥 = 𝑥𝑥 ≤ 2−ℓ

𝑘𝑘 ∼ {0,1}𝑛𝑛

Shannon’s Two Theorems:

Thm 1: The one-time pad achieves perfect secrecy with 𝑛𝑛 = ℓ

Thm 2: Every perfectly-secret scheme requires 𝑛𝑛 ≥ ℓ

Gene Grabeel



Divergence: One-time pad
Private key encryption: 𝑘𝑘 ∼ {0,1}𝑛𝑛 Encryption: 𝐸𝐸: {0,1}𝑛𝑛 × {0,1}ℓ → {0,1}𝑚𝑚

Decryption: 𝐷𝐷: {0,1}𝑛𝑛 × {0,1}𝑚𝑚 → {0,1}ℓ
Correctness: ∀𝑘𝑘∀𝑥𝑥∈{0,1}ℓ ,𝐷𝐷𝑘𝑘 𝐸𝐸𝑘𝑘 𝑥𝑥 = 𝑥𝑥

Perfect Secrecy: ∀ alg 𝐴𝐴 Pr
𝑥𝑥∼{0,1}ℓ

𝐴𝐴 𝐸𝐸𝑘𝑘 𝑥𝑥 = 𝑥𝑥 ≤ 2−ℓ

𝑘𝑘 ∼ {0,1}𝑛𝑛

Thm 1: The one-time pad achieves perfect secrecy with 𝑛𝑛 = ℓ
𝐷𝐷𝑘𝑘 𝑦𝑦 = 𝑦𝑦 ⊕ 𝑘𝑘𝐸𝐸𝑘𝑘 𝑥𝑥 = 𝑥𝑥 ⊕ 𝑘𝑘PF:

Pr[𝐴𝐴 𝑘𝑘 ⊕ 𝑥𝑥 = 𝑥𝑥] = Pr[𝐴𝐴 𝑦𝑦 = 𝑥𝑥] ≤ 2−𝑛𝑛

Equivalent description: 𝑘𝑘, 𝑥𝑥 ∈ ±1 𝑛𝑛, 𝐸𝐸𝑘𝑘 𝑥𝑥 = (𝑥𝑥1𝑘𝑘1, … , 𝑥𝑥𝑛𝑛𝑦𝑦𝑛𝑛)

Extension: 𝑘𝑘, 𝑥𝑥 ∈ ℤ𝑡𝑡n , 𝐸𝐸𝑘𝑘 𝑥𝑥 = (𝑥𝑥1 + 𝑘𝑘1 mod 𝑡𝑡, … , 𝑥𝑥𝑛𝑛 + 𝑘𝑘𝑛𝑛 mod 𝑡𝑡)

Crucial:
keys ≥ |msgs|



Fully Homomorphic Encryption (FHE)

Note: Can also use Multiparty Secure Computation (MPC)

𝑥𝑥′ 𝑥𝑥 𝐴𝐴𝐴𝐴𝐷𝐷 𝑥𝑥𝑥𝑥𝑥

𝑥𝑥′ 𝑥𝑥 𝑂𝑂𝑂𝑂 𝑥𝑥𝑥𝑥𝑥

𝐴𝐴𝑂𝑂𝑁𝑁(𝑥𝑥)𝑥𝑥



𝑥𝑥′ 𝑥𝑥 𝐴𝐴𝐴𝐴𝐴𝐴𝐷𝐷 𝑥𝑥𝑥𝑥𝑥

Fully Homomorphic Encryption (FHE)



FHE Secret key: 𝑘𝑘 ∼ {0,1}𝑛𝑛

Encryption: randomized 𝐸𝐸: {0,1}𝑛𝑛 × {0,1} → {0,1}𝑚𝑚

Decryption: 𝐷𝐷: {0,1}𝑛𝑛 × {0,1}𝑚𝑚 → {0,1}

Evaluation: randomized 𝐴𝐴𝐴𝐴𝐴𝐴𝐷𝐷: {0,1}𝑚𝑚 × {0,1}𝑚𝑚 → {0,1}𝑚𝑚

* Can also consider public key variant

Does not get 
secret key!



FHE Secret key: 𝑘𝑘 ∼ {0,1}𝑛𝑛
Encryption: randomized 𝐸𝐸: {0,1}𝑛𝑛 × {0,1} → {0,1}𝑚𝑚

Decryption: 𝐷𝐷: {0,1}𝑛𝑛 × {0,1}𝑚𝑚 → {0,1}
Evaluation: randomized 𝐴𝐴𝐴𝐴𝐴𝐴𝐷𝐷: {0,1}𝑚𝑚 × {0,1}𝑚𝑚 → {0,1}𝑚𝑚

Correctness: ∀𝑘𝑘∀𝑏𝑏∈{0,1} ,𝐷𝐷𝑘𝑘 𝐸𝐸𝑘𝑘 𝑏𝑏 = 𝑏𝑏

Evaluation: ∀𝑘𝑘∀𝑏𝑏,𝑏𝑏′∈{0,1} ,𝐴𝐴𝐴𝐴𝐴𝐴𝐷𝐷 𝐸𝐸𝑘𝑘 𝑏𝑏 ,𝐸𝐸𝑘𝑘 𝑏𝑏′ ≡ 𝐸𝐸𝑘𝑘(¬ 𝑏𝑏 ∧ 𝑏𝑏′ )

Computational
secrecy*:            ∀ alg 𝐴𝐴 of time ≪ exp(𝑛𝑛)

Pr
b∼{0,1}

𝐴𝐴 𝐸𝐸𝑘𝑘 𝑏𝑏 = 𝑏𝑏 ≤
1
2

+ exp(−𝑛𝑛)

Δ𝑇𝑇𝑇𝑇 < exp(−𝑛𝑛)

Can’t distinguish between 
𝐸𝐸𝑘𝑘(0) and 𝐸𝐸𝑘𝑘 1

𝑘𝑘 ∼ {0,1}𝑛𝑛

* Even if we get exp(𝑛𝑛) samples with same key



FHE: What’s known
Gentry 2009: FHE exists under reasonable assumptions

…  FHE exists under standard assumptions

… implementations 



What is FHE good for?

𝐴𝐴Data ℎ

Encryption: randomized 𝐸𝐸: {0,1}𝑛𝑛 × {0,1} → {0,1}𝑚𝑚

Decryption: 𝐷𝐷: {0,1}𝑛𝑛 × {0,1}𝑚𝑚 → {0,1}
Evaluation: randomized 𝐴𝐴𝐴𝐴𝐴𝐴𝐷𝐷: {0,1}𝑚𝑚 × {0,1}𝑚𝑚 → {0,1}𝑚𝑚

𝐸𝐸𝑘𝑘(𝑥𝑥) Many 𝐴𝐴𝐴𝐴𝐴𝐴𝐷𝐷s 𝐸𝐸𝑘𝑘(ℎ)

Challenges: Only get encrypted model/summary
Huge computational overhead
(Matrix vector mult on <1000 dimensions takes few secs on 32 core 250GB PC)
Halevi, Shoup 2018

https://eprint.iacr.org/2018/244


What is FHE good for?

𝐴𝐴Data ℎ

Encryption: randomized 𝐸𝐸: {0,1}𝑛𝑛 × {0,1} → {0,1}𝑚𝑚

Decryption: 𝐷𝐷: {0,1}𝑛𝑛 × {0,1}𝑚𝑚 → {0,1}
Evaluation: randomized 𝐴𝐴𝐴𝐴𝐴𝐴𝐷𝐷: {0,1}𝑚𝑚 × {0,1}𝑚𝑚 → {0,1}𝑚𝑚

𝐸𝐸𝑘𝑘(𝑥𝑥) Many 𝐴𝐴𝐴𝐴𝐴𝐴𝐷𝐷s 𝐸𝐸𝑘𝑘(ℎ)

Challenges: Only get encrypted model/summary
Huge computational overhead

Some partial preliminary successes
https://arstechnica.com/gadgets/2020/07/ibm-completes-successful-field-trials-on-fully-homomorphic-encryption/

https://arstechnica.com/gadgets/2020/07/ibm-completes-successful-field-trials-on-fully-homomorphic-encryption/


Differential Privacy



Differential Privacy

𝐴𝐴Data ℎ

𝒳𝒳 = { 𝑥𝑥1, … , 𝑥𝑥𝑖𝑖 , … , 𝑥𝑥𝑛𝑛}

Data belonging 
to 𝑖𝑖-th person

Def: 𝐴𝐴 is 𝜖𝜖 differentially private if
posterior probability 𝑥𝑥𝑖𝑖 ∈ 𝒳𝒳 ∈ 𝑒𝑒±𝜖𝜖 × prior probability 𝑥𝑥𝑖𝑖 ∈ 𝒳𝒳

∀𝒳𝒳,𝒳𝒳𝑥 s.t. 𝒳𝒳 △𝒳𝒳′ = 1, ∀ℎ

Pr 𝐴𝐴 𝒳𝒳 = ℎ ∈ 𝑒𝑒±𝜖𝜖 Pr[𝐴𝐴 𝒳𝒳′ = ℎ]

𝐴𝐴 must be 
randomized



Differential Privacy 𝐴𝐴Data ℎ

𝒳𝒳 = { 𝑥𝑥1, … , 𝑥𝑥𝑖𝑖 , … , 𝑥𝑥𝑛𝑛}

Def: 𝐴𝐴 is 𝜖𝜖 differentially private if
∀𝒳𝒳,𝒳𝒳𝑥 s.t. 𝒳𝒳 △𝒳𝒳′ = 1, ∀ℎ

Pr 𝐴𝐴 𝒳𝒳 ∈ 𝑆𝑆 ∈ 𝑒𝑒±𝜖𝜖 Pr[𝐴𝐴 𝒳𝒳′ ∈ 𝑆𝑆]

𝛿𝛿 ≪ 𝜖𝜖
Think 𝛿𝛿 = 0∀𝒳𝒳,𝒳𝒳𝑥 s.t. 𝒳𝒳 △𝒳𝒳′ = 1, ∀𝑆𝑆

+ 𝛿𝛿



Differential Privacy 𝐴𝐴Data ℎ

𝒳𝒳 = { 𝑥𝑥1, … , 𝑥𝑥𝑖𝑖 , … , 𝑥𝑥𝑛𝑛}

Def: 𝐴𝐴 is 𝜖𝜖 differentially private if

Pr ≤ 𝑒𝑒𝜖𝜖 ⋅ Pr[ ]
Bad event 
happened to 𝑖𝑖
because their 
data in 𝒳𝒳

Bad event 
happens 
anyway

Example: 𝐴𝐴(𝒳𝒳) reveals short people more likely to default on loans

Pr 𝐴𝐴 𝒳𝒳 ∈ 𝑆𝑆 ∈ 𝑒𝑒±𝜖𝜖 Pr[𝐴𝐴 𝒳𝒳′ ∈ 𝑆𝑆]
∀𝒳𝒳,𝒳𝒳𝑥 s.t. 𝒳𝒳 △𝒳𝒳′ = 1, ∀𝑆𝑆



Differential Privacy 𝐴𝐴Data ℎ

𝒳𝒳 = { 𝑥𝑥1, … , 𝑥𝑥𝑖𝑖 , … , 𝑥𝑥𝑛𝑛}

Def: 𝐴𝐴 is 𝜖𝜖 differentially private if

Pr 𝐴𝐴 𝒳𝒳 ∈ 𝑆𝑆 ∈ 𝑒𝑒±𝜖𝜖 Pr[𝐴𝐴 𝒳𝒳′ ∈ 𝑆𝑆]
∀𝒳𝒳,𝒳𝒳𝑥 s.t. 𝒳𝒳 △𝒳𝒳′ = 1, ∀𝑆𝑆

Why not Pr[𝐴𝐴 𝒳𝒳 ∈ 𝑆𝑆 ] ∈ Pr 𝐴𝐴 𝒳𝒳′ ∈ 𝑆𝑆 ± 𝜖𝜖 ?

Think: 𝐴𝐴 𝒳𝒳 = {𝑥𝑥𝑖𝑖1 , … . , 𝑥𝑥𝑖𝑖𝑘𝑘} random 𝑖𝑖1, … , 𝑖𝑖𝑘𝑘 , 𝑘𝑘 ≪ 𝑛𝑛

Not private!

Pr 𝐴𝐴 𝒳𝒳 ∈ 𝑆𝑆 − Pr[𝐴𝐴 𝒳𝒳′ ∈ 𝑆𝑆] ≤
𝑘𝑘
𝑛𝑛



Differential privacy under post-processing

Thm: If 𝐴𝐴 is 𝜖𝜖-DP and 𝐴𝐴𝑥 is 𝜖𝜖𝑥-DP then 𝐵𝐵 𝒳𝒳 = 𝐴𝐴 𝒳𝒳 ,𝐴𝐴(𝒳𝒳′) is 𝜖𝜖 + 𝜖𝜖′-DP

Proof: ∀ℎ, ℎ𝑥 and 𝒳𝒳 △𝒳𝒳𝑥 ≤ 1

Pr 𝐴𝐴 𝒳𝒳 ,𝐴𝐴′ 𝒳𝒳 = (ℎ, ℎ′) ≤ 𝑒𝑒𝜖𝜖 Pr 𝐴𝐴 𝒳𝒳′ = ℎ ⋅ 𝑒𝑒𝜖𝜖′ Pr[𝐴𝐴′ 𝒳𝒳′ = ℎ𝑥]

Differential privacy composition

Thm: If 𝐴𝐴 is 𝜖𝜖-DP and 𝐵𝐵 𝒳𝒳 = 𝑓𝑓(𝐴𝐴 𝒳𝒳 ) then 𝐵𝐵 𝒳𝒳 is 𝜖𝜖-DP

Proof: ∀ℎ and 𝒳𝒳 △𝒳𝒳𝑥 ≤ 1
Pr 𝑓𝑓 𝐴𝐴 𝒳𝒳 = ℎ = �

ℎ′∈𝑓𝑓−1 ℎ

Pr[𝐴𝐴 𝒳𝒳 = ℎ′] ≤ 𝑒𝑒𝜖𝜖 �
ℎ′∈𝑓𝑓−1 ℎ

Pr 𝐴𝐴 𝒳𝒳𝑥 = ℎ′ = 𝑒𝑒𝜖𝜖 Pr[𝑓𝑓(𝐴𝐴 𝒳𝒳′ ) = ℎ]



DP guarantees
Def: A training mechanism 𝒳𝒳 → 𝑓𝑓𝑤𝑤 is broken if ∃𝐴𝐴 s.t.

𝐴𝐴 𝑓𝑓𝑤𝑤 outputs 𝑥𝑥 ∈ 𝒳𝒳

Claim: If mechanism is 𝜖𝜖, 𝛿𝛿 -DP then  broken with prob ≤ 𝜖𝜖
𝑁𝑁

+ 𝛿𝛿

(1
𝑁𝑁

= prob random guessing 𝑥𝑥)



Differentially private statistics:
Publish estimates  𝑓𝑓1 ≈ ∑𝑥𝑥∈𝒳𝒳 𝑓𝑓1 𝑥𝑥 , … ,𝑓𝑓𝑘𝑘 ≈ ∑𝑥𝑥∼𝒳𝒳 𝑓𝑓𝑘𝑘(𝑥𝑥)

In differentially private way

Why can’t we just publish sums?

• 30 C19+ cases in Cambridge
• 29 C19+ cases age < 70
• 12 C19+ cases liver disease
• 11 C19+ cases age < 70 and liver disease



Differentially private statistics:
Publish estimates  𝑓𝑓1 ≈ ∑𝑥𝑥∈𝒳𝒳 𝑓𝑓1 𝑥𝑥 , … ,𝑓𝑓𝑘𝑘 ≈ ∑𝑥𝑥∼𝒳𝒳 𝑓𝑓𝑘𝑘(𝑥𝑥)

In differentially private way

Laplace mechanism: 

𝑓𝑓𝑖𝑖 = �
𝑥𝑥∼𝑋𝑋

𝑓𝑓𝑖𝑖(𝑥𝑥) + Lap 𝑘𝑘/𝜖𝜖

Assume 𝑓𝑓𝑖𝑖 𝑥𝑥 ∈ [0,1]

Pr Lap 𝑏𝑏 = 𝑥𝑥 =
1
2𝑏𝑏

exp(−|𝑥𝑥|/𝑏𝑏)

Symmetric 
exponential

𝜎𝜎2 = 2𝑏𝑏2In practice, 𝜎𝜎 ≈ 𝑛𝑛
acceptable

THM: Laplace mechanism is 𝜖𝜖-DP



Publish estimates  𝑓𝑓1 ≈ ∑𝑥𝑥∈𝒳𝒳 𝑓𝑓1 𝑥𝑥 , … ,𝑓𝑓𝑘𝑘 ≈ ∑𝑥𝑥∼𝒳𝒳 𝑓𝑓𝑘𝑘(𝑥𝑥)

Laplace mechanism: 

Pr Lap 𝑏𝑏 = 𝑥𝑥 =
1
2𝑏𝑏

exp(−|𝑥𝑥|/𝑏𝑏)

𝜎𝜎2 = 2𝑏𝑏2THM: Laplace mechanism is 𝜖𝜖-DP

PF: Focus on single 𝑓𝑓 𝑓𝑓 𝒳𝒳 ≔ �
𝑥𝑥∈𝒳𝒳

𝑓𝑓(𝑥𝑥) 𝑓𝑓 𝒳𝒳𝑥 ≔ �
𝑥𝑥∈𝒳𝒳′

𝑓𝑓(𝑥𝑥)

≤
1
2𝜖𝜖

exp(𝜖𝜖 − 𝜖𝜖 𝑣𝑣 − 𝑓𝑓 𝒳𝒳𝑥 )Pr 𝑓𝑓(𝒳𝒳) = 𝑣𝑣 =
1
2𝜖𝜖

exp(−𝜖𝜖 𝑣𝑣 − 𝑓𝑓 𝒳𝒳 )

𝑓𝑓 𝒳𝒳 − 𝑓𝑓 𝒳𝒳′ ≤ 1

𝑓𝑓𝑖𝑖 = �
𝑥𝑥∼𝑋𝑋

𝑓𝑓𝑖𝑖(𝑥𝑥) + Lap 𝑘𝑘/𝜖𝜖

Assume 𝑓𝑓𝑖𝑖 𝑥𝑥 ∈ [0,1]

≤𝑒𝑒𝜖𝜖 ⋅ Pr[ 𝑓𝑓 𝒳𝒳′ = 𝑣𝑣]



Publish estimates  𝑓𝑓1 ≈ ∑𝑥𝑥∈𝒳𝒳 𝑓𝑓1 𝑥𝑥 , … ,𝑓𝑓𝑘𝑘 ≈ ∑𝑥𝑥∼𝒳𝒳 𝑓𝑓𝑘𝑘(𝑥𝑥)

Laplace mechanism: 

Pr Lap 𝑏𝑏 = 𝑥𝑥 =
1
2𝑏𝑏

exp(−|𝑥𝑥|/𝑏𝑏)

𝜎𝜎2 = 2𝑏𝑏2THM: Laplace mechanism is 𝜖𝜖-DP

𝑓𝑓𝑖𝑖 = �
𝑥𝑥∼𝑋𝑋

𝑓𝑓𝑖𝑖(𝑥𝑥) + Lap 𝑘𝑘/𝜖𝜖

Assume 𝑓𝑓𝑖𝑖 𝑥𝑥 ∈ [0,1]

Generalization: Achieve 𝜖𝜖-DP for std ≈ 𝑘𝑘/𝜖𝜖 estimator for any 𝑓𝑓:𝒳𝒳 → ℝ𝑚𝑚

s.t. 𝑓𝑓 𝒳𝒳 − 𝑓𝑓 𝒳𝒳′
1 ≤ 𝑘𝑘 for all 𝒳𝒳 △𝒳𝒳′ = 1

Sensitivity of 𝑓𝑓



Important

Differential privacy is definition

Laplace mechanism is one approach to achieve definition

Can also use other noise distributions  (e.g. Gaussian)

(typically get (𝜖𝜖, 𝛿𝛿)-DP in such cases)



DP-SGD
Replace step 𝑤𝑤 ← w − 𝜂𝜂∇ℒ𝑖𝑖(𝑤𝑤)

with 𝑤𝑤 ← w − 𝜂𝜂 ∇ℒ𝑖𝑖𝐶𝐶 𝑤𝑤 + 𝐴𝐴 0,𝜎𝜎2𝐶𝐶2𝐼𝐼

ℒ𝑖𝑖 = loss for batch 𝑖𝑖
sensitivity ≈ 𝑏𝑏/𝑛𝑛

ℒ𝑖𝑖𝐶𝐶 = gradient for every sample clipped at 𝐶𝐶

THM: For const 𝜖𝜖,𝐶𝐶 can achieve (𝜖𝜖, 𝑜𝑜 1 )-DP  with const 𝜎𝜎 as long as

# 𝑠𝑠𝑡𝑡𝑒𝑒𝑠𝑠𝑠𝑠 ≪
𝑛𝑛
𝑏𝑏

2



Evaluation

MNIST

CIFAR 10



Protection from memorization in practice



Private aggregation of teacher ensembles





Heuristics

Avoid DP issues:

• Accuracy hit

• Large values for 𝜖𝜖

• Slower



InstaHide
Recall FHE-based training:

𝐴𝐴𝑥𝑥1, … , 𝑥𝑥𝑛𝑛 ℎ

𝐸𝐸𝑘𝑘 𝑥𝑥1 …𝐸𝐸𝑘𝑘(𝑥𝑥𝑛𝑛) Many 𝐴𝐴𝐴𝐴𝐴𝐴𝐷𝐷s 𝐸𝐸𝑘𝑘(ℎ)

Challenges: Only get encrypted model/summary
Huge computational overhead



InstaHide

𝐴𝐴𝑥𝑥1, … , 𝑥𝑥𝑛𝑛 ℎ



InstaHide

𝐴𝐴𝑥𝑥1, … , 𝑥𝑥𝑛𝑛 ℎ



InstaHide

𝐴𝐴𝑥𝑥1, … , 𝑥𝑥𝑛𝑛 ℎ�𝑥𝑥1, … , �𝑥𝑥𝑚𝑚"𝐸𝐸"

Public 
data

Hope: �𝑥𝑥1, … . , �𝑥𝑥𝑚𝑚 “encrypt” the original data, but are still good enough to train on.

Can test 
empirically

Requires 
definition + proof

Intuition: Mixup* data augmentation

Require 𝑓𝑓 𝛼𝛼𝑥𝑥1 + 𝛽𝛽𝑥𝑥2 + 𝛾𝛾𝑥𝑥3 ≈ (𝛼𝛼,𝛽𝛽, 𝛾𝛾)

* Zhang, Cisse, Dauphin, Lopez-Paz ‘18



InstaHide

𝐴𝐴𝑥𝑥1, … , 𝑥𝑥𝑛𝑛 ℎ�𝑥𝑥1, … , �𝑥𝑥𝑚𝑚"𝐸𝐸"

Public 
data

1) 𝑥𝑥′ = 𝜆𝜆1𝑥𝑥1 + 𝜆𝜆2𝑥𝑥2 + 𝜆𝜆3𝑥𝑥3 + 𝜆𝜆4𝑥𝑥4

2) �𝑥𝑥 = (𝑥𝑥1′𝑘𝑘1,⋯ , 𝑥𝑥𝑛𝑛′ 𝑘𝑘𝑛𝑛)

for 𝑘𝑘 ∼ ±1 𝑛𝑛

OTP 
inspired

𝑥𝑥 ∈ −1, +1 𝑛𝑛



Attack on InstaHide



Attack description

Obs 1: 𝑥𝑥1 … 𝑥𝑥𝑛𝑛 ↦ (𝑘𝑘1𝑥𝑥1, … , 𝑘𝑘𝑛𝑛𝑥𝑥𝑛𝑛) for 𝑘𝑘 ∈ ±1 𝑛𝑛 allows to recover ( 𝑥𝑥1 , … , 𝑥𝑥𝑛𝑛 )

𝑥𝑥𝑖𝑖 = R/G/B value of pixel, normalized to [−1, +1]

1) 𝑥𝑥′ = 𝜆𝜆1𝑥𝑥1 + 𝜆𝜆2𝑥𝑥2 + 𝜆𝜆3𝑥𝑥3 + 𝜆𝜆4𝑥𝑥4

2) �𝑥𝑥 = (𝑥𝑥1′𝑘𝑘1,⋯ , 𝑥𝑥𝑛𝑛′ 𝑘𝑘𝑛𝑛)

for 𝑘𝑘 ∼ ±1 𝑛𝑛

Original 
image

Sign
Flipped

Absolute 
value



Attack description 𝑥𝑥𝑖𝑖 = R/G/B value of pixel, normalized to [−1, +1]

1) 𝑥𝑥′ = 𝜆𝜆1𝑥𝑥1 + 𝜆𝜆2𝑥𝑥2 + 𝜆𝜆3𝑥𝑥3 + 𝜆𝜆4𝑥𝑥4

2) �𝑥𝑥 = ( 𝑥𝑥1′ , … , 𝑥𝑥𝑛𝑛′ )

≈ Ω(1) agreement

All came from same 
original private image

Average ≈
Train similarity 

function



Attack description 𝑥𝑥𝑖𝑖 = R/G/B value of pixel, normalized to [−1, +1]

1) 𝑥𝑥′ = 𝜆𝜆1𝑥𝑥1 + 𝜆𝜆2𝑥𝑥2 + 𝜆𝜆3𝑥𝑥3 + 𝜆𝜆4𝑥𝑥4

2) �𝑥𝑥 = ( 𝑥𝑥1′ , … , 𝑥𝑥𝑛𝑛′ )

All came from same 
original private image

𝜆𝜆1

𝜆𝜆2pr
iv

at
e

encoded
Reconstruct encoding graph

�𝑥𝑥 = 𝑎𝑎𝑏𝑏𝑠𝑠(𝜆𝜆1𝑥𝑥𝑖𝑖 + 𝜆𝜆2𝑥𝑥𝑗𝑗 + 𝑛𝑛𝑜𝑜𝑖𝑖𝑠𝑠𝑒𝑒)



Attack description 𝑥𝑥𝑖𝑖 = R/G/B value of pixel, normalized to [−1, +1]

1) 𝑥𝑥′ = 𝜆𝜆1𝑥𝑥1 + 𝜆𝜆2𝑥𝑥2 + 𝜆𝜆3𝑥𝑥3 + 𝜆𝜆4𝑥𝑥4

2) �𝑥𝑥 = ( 𝑥𝑥1′ , … , 𝑥𝑥𝑛𝑛′ )

𝜆𝜆1

𝜆𝜆2pr
iv

at
e

encoded

�𝑥𝑥 = 𝑎𝑎𝑏𝑏𝑠𝑠(𝜆𝜆1𝑥𝑥𝑖𝑖 + 𝜆𝜆2𝑥𝑥𝑗𝑗 + 𝑛𝑛𝑜𝑜𝑖𝑖𝑠𝑠𝑒𝑒)

InstaHide challenge:
100 private images
5000 encoded images
5000𝑛𝑛 non-linear eq in 100𝑛𝑛 vars

Use GD to find arg min abs 𝐴𝐴𝐴𝐴 − �𝐴𝐴 2

𝐴𝐴 ∈ −1,1 𝑛𝑛×𝑡𝑡

𝐴𝐴 : Adj 
matrix



Black Box recovery



Learning

𝐴𝐴Data ℎ

Model / summaries / etcCould be 
private!

Solutions:
• Cryptographic: 100% privacy but at efficiency/control cost
• Differential privacy: “X% privacy” but X vs utility tradeoff not great
• Heuristic: Hope for  100%, might get 0%
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